51 research outputs found

    Electrical observation of a tunable band gap in bilayer graphene nanoribbons at room temperature

    Full text link
    We investigate the transport properties of double-gated bilayer graphene nanoribbons at room temperature. The devices were fabricated using conventional CMOS-compatible processes. By analyzing the dependence of the resistance at the charge neutrality point as a function of the electric field applied perpendicular to the graphene surface, we show that a band gap in the density of states opens, reaching an effective value of ~sim50 meV. This demonstrates the potential of bilayer graphene as FET channel material in a conventional CMOS environment.Comment: 3 pages, 3 figure

    Non-volatile switching in graphene field effect devices

    Full text link
    The absence of a band gap in graphene restricts its straight forward application as a channel material in field effect transistors. In this letter, we report on a new approach to engineer a band gap in graphene field effect devices (FED) by controlled structural modification of the graphene channel itself. The conductance in the FEDs is switched between a conductive "on-state" to an insulating "off-state" with more than six orders of magnitude difference in conductance. Above a critical value of an electric field applied to the FED gate under certain environmental conditions, a chemical modification takes place to form insulating graphene derivatives. The effect can be reversed by electrical fields of opposite polarity or short current pulses to recover the initial state. These reversible switches could potentially be applied to non-volatile memories and novel neuromorphic processing concepts.Comment: 14 pages, 4 figures, submitted to IEEE ED

    High On/Off Ratios in Bilayer Graphene Field Effect Transistors Realized by Surface Dopants

    Full text link
    The unique property of bilayer graphene to show a band gap tunable by external electrical fields enables a variety of different device concepts with novel functionalities for electronic, optoelectronic and sensor applications. So far the operation of bilayer graphene based field effect transistors requires two individual gates to vary the channel's conductance and to create a band gap. In this paper we report on a method to increase the on/off ratio in single gated bilayer graphene field effect transistors by adsorbate doping. The adsorbate dopants on the upper side of the graphene establish a displacement field perpendicular to the graphene surface breaking the inversion symmetry of the two graphene layers. Low temperature measurements indicate, that the increased on/off ratio is caused by the opening of a mobility gap. Beside field effect transistors the presented approach can also be employed for other bilayer graphene based devices like photodetectors for THz to infrared radiation, chemical sensors and in more sophisticated structures such as antidot- or superlattices where an artificial potential landscape has to be created.Comment: 4 pages, 4 figure

    Device architectures based on graphene channels

    No full text

    Current Saturation and Voltage Gain in Bilayer Graphene Field Effect Transistors

    No full text
    The emergence of graphene with its unique electrical properties has triggered hopes in the electronic devices community regarding its exploitation as a channel material in field effect transistors. Graphene is especially promising for devices working at frequencies in the 100 GHz range. So far, graphene field effect transistors (GFETs) have shown cutoff frequencies up to 300 GHz, while exhibiting poor voltage gains, another important figure of merit for analog high frequency applications. In the present work, we show that the voltage gain of GFETs can be improved significantly by using bilayer graphene, where a band gap is introduced through a vertical electric displacement field. At a displacement field of −1.7 V/nm the bilayer GFETs exhibit an intrinsic voltage gain up to 35, a factor of 6 higher than the voltage gain in corresponding monolayer GFETs. The transconductance, which limits the cutoff frequency of a transistor, is not degraded by the displacement field and is similar in both monolayer and bilayer GFETs. Using numerical simulations based on an atomistic <i>p</i><sub><i>z</i></sub> tight-binding Hamiltonian we demonstrate that this approach can be extended to sub-100 nm gate lengths
    • …
    corecore