581 research outputs found

    Comment on ''Phase Diagram of La2−x_{2-x}Srx_xCuO4_4 Probed in the Infrared: Imprints of Charge Stripe Excitations''

    Full text link
    Recently Lucarelli {\it et al.} have reported\cite{lucarelli} temperature-dependence of the in-plane optical reflectivity of La2−x_{2-x}Srx_xCuO4_4 over a wide doping range, focusing on the infrared peaks at 30 cm−1^{-1} (for xx=0.12), 250 cm−1^{-1} and 510 cm−1^{-1}. They interpreted the first peak (30 cm−1^{-1}) as a signature of charge stripe ordering, while the latter two (250 cm−1^{-1} and 510 cm−1^{-1}) are attributed to the polaronic charge excitations. However, careful readers would notice that the reported spectra are largely different from those so far measured on the same system. As we illustrate below, all these peaks are caused by an uncontrolled leakage of the c-axis reflectivity into the measured spectra.Comment: 1 page, 1 figure, accepted for publication in Phys. Rev. Lett 91 (2003

    Twisted speckle entities inside wavefront reversal mirrors

    Full text link
    The previously unknown property of the optical speckle pattern reported. The interference of a speckle with an oppositely moving phase-conjugated speckle wave produces a randomly distributed ensemble of a twisted entities (ropes) surrounding optical vortex lines. These entities appear in a wide range of randomly chosen speckle parameters inside the phase-conjugating mirrors regardless to an internal physical mechanism of the wavefront reversal. These numerically generated interference patterns are relevant to a Brillouin PC\bf PC-mirrors and to a four-wave mixing PC\bf PC-mirrors based upon laser trapped ultracold atomic cloud.Comment: 4 pages,3 figures, Accepted to Physical Review

    Optical study of interactions in a d-electron Kondo lattice with ferromagnetism

    Full text link
    We report on a comprehensive optical, transport and thermodynamic study of the Zintl compound Yb14_{14}MnSb11_{11}, demonstrating that it is the first ferromagnetic Kondo lattice compound in the underscreened limit. We propose a scenerio whereby the combination of Kondo and Jahn-Teller effects provides a consistent explanation of both transport and optical data.Comment: 4 page

    Optical characterization of Bi2_2Se3_3 in a magnetic field: infrared evidence for magnetoelectric coupling in a topological insulator material

    Full text link
    We present an infrared magneto-optical study of the highly thermoelectric narrow-gap semiconductor Bi2_2Se3_3. Far-infrared and mid-infrared (IR) reflectance and transmission measurements have been performed in magnetic fields oriented both parallel and perpendicular to the trigonal cc axis of this layered material, and supplemented with UV-visible ellipsometry to obtain the optical conductivity σ1(ω)\sigma_1(\omega). With lowering of temperature we observe narrowing of the Drude conductivity due to reduced quasiparticle scattering, as well as the increase in the absorption edge due to direct electronic transitions. Magnetic fields H∥cH \parallel c dramatically renormalize and asymmetrically broaden the strongest far-IR optical phonon, indicating interaction of the phonon with the continuum free-carrier spectrum and significant magnetoelectric coupling. For the perpendicular field orientation, electronic absorption is enhanced, and the plasma edge is slightly shifted to higher energies. In both cases the direct transition energy is softened in magnetic field.Comment: Final versio

    Colloquium: Graphene spectroscopy

    Full text link
    Spectroscopic studies of electronic phenomena in graphene are reviewed. A variety of methods and techniques are surveyed, from quasiparticle spectroscopies (tunneling, photoemission) to methods probing density and current response (infrared optics, Raman) to scanning probe nanoscopy and ultrafast pump-probe experiments. Vast complimentary information derived from these investigations is shown to highlight unusual properties of Dirac quasiparticles and many-body interaction effects in the physics of graphene.Comment: 36 pages, 16 figure

    Extracting the electron--boson spectral function α2\alpha^2F(ω\omega) from infrared and photoemission data using inverse theory

    Full text link
    We present a new method of extracting electron-boson spectral function α2\alpha^2F(ω\omega) from infrared and photoemission data. This procedure is based on inverse theory and will be shown to be superior to previous techniques. Numerical implementation of the algorithm is presented in detail and then used to accurately determine the doping and temperature dependence of the spectral function in several families of high-Tc_c superconductors. Principal limitations of extracting α2\alpha^2F(ω\omega) from experimental data will be pointed out. We directly compare the IR and ARPES α2\alpha^2F(ω\omega) and discuss the resonance structure in the spectra in terms of existing theoretical models

    Heavy fermion fluid in high magnetic fields: an infrared study of CeRu4_4Sb12_{12}

    Full text link
    We report a comprehensive infrared magneto-spectroscopy study of CeRu4_4Sb12_{12} compound revealing quasiparticles with heavy effective mass m∗^*, with a detailed analysis of optical constants in fields up to 17 T. We find that the applied magnetic field strongly affects the low energy excitations in the system. In particular, the magnitude of m∗^* ≃\simeq 70 mb_b (mb_b is the quasiparticle band mass) at 10 K is suppressed by as much as 25 % at 17 T. This effect is in quantitative agreement with the mean-field solution of the periodic Anderson model augmented with a Zeeman term
    • …
    corecore