125 research outputs found

    Fermi gas response to time-dependent perturbations

    Full text link
    We describe the Riemann-Hilbert (RH) approach to computing the long-time response of a Fermi gas to a time-dependent perturbation. The approach maps the problem onto a non-commuting RH problem. The method is non-perturbative, quite general and can be used to compute the Fermi gas response in driven (out of equilibrium) as well as equilibrium systems. We illustrate the power of the method by rederiving standard results for the core-hole and open-line Greens functions for the equilibrium Fermi edge singularity (FES) problem. We then show that the case of the non-separable potential can be solved non-perturbatively with no more effort than for the separable case. We compute the corresponding results for a biased (non-equilibrium) model tunneling device, similar to those used in single photon detectors, in which a photon absorption process can significantly change the conductance of the barrier. For times much larger than the inverse bias across the device, the response of the Fermi gases in the two electrodes shows that the equilibrium Fermi edge singularity is smoothed, shifted in frequency and becomes polarity-dependent.These results have a simple interpretation in terms of known results for the equilibrium case but with (in general complex-valued) combinations of elements of the scattering matrix replacing the equilibrium phase shifts. We also consider the shot noise spectrum of a tunnel junction subject to a time-dependent bias and demonstrate that the calculation is essentially the same as for the FES problem. For the case of a periodically driven device we show that the noise spectrum for the Coherent States of Alternating Current can be easily obtained using this approach.Comment: 15 page

    Interface dependence of the Josephson-current fluctuations in short SNS junctions

    Full text link
    We discuss the dependence of the Josephson current correlations in mesoscopic superconductor/normal-conductor/superconductor (SNS) devices on the transparency of the superconductor/normal-conductor (SN) interfaces. Focusing on short junctions we apply the supersymmetry method to construct an effective field theory for mesoscopic SNS devices which is evaluated in the limit of highly and weakly transparent interfaces. We show that the two-point Josephson-current correlator differs by an universal factor 2 in these two cases.Comment: 5 pages, 1figure, version accepted by PR

    From clean to diffusive mesoscopic systems: A semiclassical approach to the magnetic susceptibility

    Full text link
    We study disorder-induced spectral correlations and their effect on the magnetic susceptibility of mesoscopic quantum systems in the non-diffusive regime. By combining a diagrammatic perturbative approach with semiclassical techniques we perform impurity averaging for non-translational invariant systems. This allows us to study the crossover from clean to diffusive systems. As an application we consider the susceptibility of non-interacting electrons in a ballistic microstructure in the presence of weak disorder. We present numerical results for a square billiard and approximate analytic results for generic chaotic geometries. We show that for the elastic mean free path \ell larger than the system size, there are two distinct regimes of behaviour depending on the relative magnitudes of \ell and an inelastic scattering length.Comment: 7 pages, Latex-type, EuroMacr, 4 Postscript figures, to appear in Europhys. Lett. 199

    Fermi edge singularity in a non-equilibrium system

    Full text link
    We report exact results for the Fermi Edge Singularity in the absorption spectrum of an out-of-equilibrium tunnel junction. We consider two metals with chemical potential difference V separated by a tunneling barrier containing a defect, which exists in one of two states. When it is in its excited state, tunneling through the otherwise impermeable barrier is possible. We find that the lineshape not only depends on the total scattering phase shift as in the equilibrium case but also on the difference in the phase of the reflection amplitudes on the two sides of the barrier. The out-of-equilibrium spectrum extends below the original threshold as energy can be provided by the power source driving current across the barrier. Our results have a surprisingly simple interpretation in terms of known results for the equilibrium case but with (in general complex-valued) combinations of elements of the scattering matrix replacing the equilibrium phase shifts.Comment: 4 page

    Role of divergence of classical trajectories in quantum chaos

    Full text link
    We study logarithmical in \hbar effects in the statistical description of quantum chaos. We found analytical expressions for the deviations from the universality in the weak localization corrections and the level statistics and showed that the characteristic scale for these deviations is the Ehrenfest time, tE=λ1lnt_E= \lambda^{-1}|\ln\hbar|, where λ\lambda is the Lyapunov exponent of the classical motion.Comment: 4 pages, no figure

    The effect of Fermi surface curvature on low-energy properties of fermions with singular interactions

    Full text link
    We discuss the effect of Fermi surface curvature on long-distance/time asymptotic behaviors of two-dimensional fermions interacting via a gapless mode described by an effective gauge field-like propagator. By comparing the predictions based on the idea of multi-dimensional bosonization with those of the strong- coupling Eliashberg approach, we demonstrate that an agreement between the two requires a further extension of the former technique.Comment: Latex, 4+ pages. Phys. Rev. Lett., to appea

    Bosonization for disordered and chaotic systems

    Full text link
    Using a supersymmetry formalism, we reduce exactly the problem of electron motion in an external potential to a new supermatrix model valid at all distances. All approximate nonlinear sigma models obtained previously for disordered systems can be derived from our exact model using a coarse-graining procedure. As an example, we consider a model for a smooth disorder and demonstrate that using our approach does not lead to a 'mode-locking' problem. As a new application, we consider scattering on strong impurities for which the Born approximation cannot be used. Our method provides a new calculational scheme for disordered and chaotic systems.Comment: 4 pages, no figure, REVTeX4; title changed, revision for publicatio

    A minimal approach for the local statistical properties of a one-dimensional disordered wire

    Full text link
    We consider a one-dimensional wire in gaussian random potential. By treating the spatial direction as imaginary time, we construct a `minimal' zero-dimensional quantum system such that the local statistical properties of the wire are given as products of statistically independent matrix elements of the evolution operator of the system. The space of states of this quantum system is found to be a particular non-unitary, infinite dimensional representation of the pseudo-unitary group, U(1,1). We show that our construction is minimal in a well defined sense, and compare it to the supersymmetry and Berezinskii techniques.Comment: 10 pages, 0 figure

    Field Theory of Mesoscopic Fluctuations in Superconductor/Normal-Metal Systems

    Full text link
    Thermodynamic and transport properties of normal disordered conductors are strongly influenced by the proximity of a superconductor. A cooperation between mesoscopic coherence and Andreev scattering of particles from the superconductor generates new types of interference phenomena. We introduce a field theoretic approach capable of exploring both averaged properties and mesoscopic fluctuations of superconductor/normal-metal systems. As an example the method is applied to the study of the level statistics of a SNS-junction.Comment: 4 pages, REVTEX, two eps-figures included; submitted to JETP letter
    corecore