3,320 research outputs found

    Measures with zeros in the inverse of their moment matrix

    Full text link
    We investigate and discuss when the inverse of a multivariate truncated moment matrix of a measure μ\mu has zeros in some prescribed entries. We describe precisely which pattern of these zeroes corresponds to independence, namely, the measure having a product structure. A more refined finding is that the key factor forcing a zero entry in this inverse matrix is a certain conditional triangularity property of the orthogonal polynomials associated with μ\mu.Comment: Published in at http://dx.doi.org/10.1214/07-AOP365 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Collectively enhanced resonant photoionization in a multi-atom ensemble

    Full text link
    Photoionization of an atom via interatomic correlations to N neighboring atoms may be strongly enhanced due to constructive interference of quantum pathways. The ionization proceeds via resonant photoexcitation of a neighbor atom and subsequent interatomic Coulombic decay. The enhancement can scale with N^2, leading to "super-enhanced photoionization".Comment: 4 pages, 2 figure

    An Iterative Receiver for OFDM With Sparsity-Based Parametric Channel Estimation

    Get PDF
    In this work we design a receiver that iteratively passes soft information between the channel estimation and data decoding stages. The receiver incorporates sparsity-based parametric channel estimation. State-of-the-art sparsity-based iterative receivers simplify the channel estimation problem by restricting the multipath delays to a grid. Our receiver does not impose such a restriction. As a result it does not suffer from the leakage effect, which destroys sparsity. Communication at near capacity rates in high SNR requires a large modulation order. Due to the close proximity of modulation symbols in such systems, the grid-based approximation is of insufficient accuracy. We show numerically that a state-of-the-art iterative receiver with grid-based sparse channel estimation exhibits a bit-error-rate floor in the high SNR regime. On the contrary, our receiver performs very close to the perfect channel state information bound for all SNR values. We also demonstrate both theoretically and numerically that parametric channel estimation works well in dense channels, i.e., when the number of multipath components is large and each individual component cannot be resolved.Comment: Major revision, accepted for IEEE Transactions on Signal Processin

    Algorithm Developments for Discrete Adjoint Methods

    Get PDF
    This paper presents a number of algorithm developments for adjoint methods using the 'discrete' approach in which the discretisation of the non-linear equations is linearised and the resulting matrix is then transposed. With a new iterative procedure for solving the adjoint equations, exact numerical equivalence is maintained between the linear and adjoint discretisations. The incorporation of strong boundary conditions within the discrete approach is discussed, as well as a new application of adjoint methods to linear unsteady flow in turbomachinery
    corecore