149 research outputs found

    PET Molecular Targets and Near-Infrared Fluorescence Imaging of Atherosclerosis

    Get PDF
    PURPOSE OF REVIEW: With this review, we aim to summarize the role of positron emission tomography (PET) and near-infrared fluorescence imaging (NIRF) in the detection of atherosclerosis. RECENT FINDINGS: (18)F-FDG is an established measure of increased macrophage activity. However, due to its low specificity, new radiotracers have emerged for more specific detection of vascular inflammation and other high-risk plaque features such as microcalcification and neovascularization. Novel NIRF probes are engineered to sense endothelial damage as an early sign of plaque erosion as well as oxidized low-density lipoprotein (oxLDL) as a prime target for atherosclerosis. Integrated NIRF/OCT (optical coherence tomography) catheters enable to detect stent-associated microthrombi. Novel radiotracers can improve specificity of PET for imaging atherosclerosis. Advanced NIRF probes show promise for future application in human. Intravascular NIRF might play a prominent role in the detection of stent-induced vascular injury

    The Early Evolution of Biting–Chewing Performance in Hexapoda

    Get PDF
    Insects show a plethora of different mandible shapes. It was advocated that these mandible shapes are mainly a function of different feeding habits. This hypothesis was tested on a larger sampling of non-holometabolan biting–chewing insects with additional tests to understand the interplay of mandible function, feeding guild, and phylogeny. The results show that at the studied systematic level, variation in mandible biting–chewing effectivity is regulated to a large extent by phylogenetic history and the configuration of the mandible joints rather than the food preference of a given taxon. Additionally, lineages with multiple mandibular joints such as primary wingless hexapods show a wider functional space occupation of mandibular effectivity than dicondylic insects (= silverfish + winged insects) at significantly different evolutionary rates. The evolution and occupation of a comparably narrow functional performance space of dicondylic insects is surprising given the low effectivity values of this food uptake solution. Possible reasons for this relative evolutionary “stasis” are discussed

    Phylogenetic Approach Reveals That Virus Genotype Largely Determines HIV Set-Point Viral Load

    Get PDF
    HIV virulence, i.e. the time of progression to AIDS, varies greatly among patients. As for other rapidly evolving pathogens of humans, it is difficult to know if this variance is controlled by the genotype of the host or that of the virus because the transmission chain is usually unknown. We apply the phylogenetic comparative approach (PCA) to estimate the heritability of a trait from one infection to the next, which indicates the control of the virus genotype over this trait. The idea is to use viral RNA sequences obtained from patients infected by HIV-1 subtype B to build a phylogeny, which approximately reflects the transmission chain. Heritability is measured statistically as the propensity for patients close in the phylogeny to exhibit similar infection trait values. The approach reveals that up to half of the variance in set-point viral load, a trait associated with virulence, can be heritable. Our estimate is significant and robust to noise in the phylogeny. We also check for the consistency of our approach by showing that a trait related to drug resistance is almost entirely heritable. Finally, we show the importance of taking into account the transmission chain when estimating correlations between infection traits. The fact that HIV virulence is, at least partially, heritable from one infection to the next has clinical and epidemiological implications. The difference between earlier studies and ours comes from the quality of our dataset and from the power of the PCA, which can be applied to large datasets and accounts for within-host evolution. The PCA opens new perspectives for approaches linking clinical data and evolutionary biology because it can be extended to study other traits or other infectious diseases

    Clinical practice: Coeliac disease

    Get PDF
    Coeliac disease (CD) is an immune-mediated systemic condition elicited by gluten and related prolamines in genetically predisposed individuals and characterised by gluten-induced symptoms and signs, specific antibodies, a specific human leukocyte antigen (HLA) type and enteropathy. The risk of coeliac disease is increased in first-degree relatives, certain syndromes including Down syndrome and autoimmune disorders. It is thought to occur in 1 in 100–200 individuals, but still only one in four cases is diagnosed. Small-bowel biopsy is no longer deemed necessary in a subgroup of patients, i.e. when all of the following are present: typical symptoms or signs, high titres of and transglutaminase antibodies, endomysial antibodies, and HLA-type DQ2 or DQ8. In all other cases, small-bowel biopsy remains mandatory for a correct diagnosis. Therapy consists of a strictly gluten-free diet. This should result in complete disappearance of symptoms and of serological markers. Adequate follow-up is considered essential. Conclusion: Although small-bowel biopsy may be omitted in a minority of patients, small-bowel biopsy is essential for a correct diagnosis of CD in all other cases. Diagnostic work-up should be completed before treatment with gluten-free diet instituted

    What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology

    Get PDF
    Stochastic resonance is said to be observed when increases in levels of unpredictable fluctuations—e.g., random noise—cause an increase in a metric of the quality of signal transmission or detection performance, rather than a decrease. This counterintuitive effect relies on system nonlinearities and on some parameter ranges being “suboptimal”. Stochastic resonance has been observed, quantified, and described in a plethora of physical and biological systems, including neurons. Being a topic of widespread multidisciplinary interest, the definition of stochastic resonance has evolved significantly over the last decade or so, leading to a number of debates, misunderstandings, and controversies. Perhaps the most important debate is whether the brain has evolved to utilize random noise in vivo, as part of the “neural code”. Surprisingly, this debate has been for the most part ignored by neuroscientists, despite much indirect evidence of a positive role for noise in the brain. We explore some of the reasons for this and argue why it would be more surprising if the brain did not exploit randomness provided by noise—via stochastic resonance or otherwise—than if it did. We also challenge neuroscientists and biologists, both computational and experimental, to embrace a very broad definition of stochastic resonance in terms of signal-processing “noise benefits”, and to devise experiments aimed at verifying that random variability can play a functional role in the brain, nervous system, or other areas of biology

    Persistent Immune Tolerance to Nickel and Chromium by Oral Administration Prior to Cutaneous Sensitization

    Get PDF
    Oral administration of allergens, foreign proteins, or cell- bound antigens may induce systemic suppression of subsequent humoral and cell-mediated immune responses (“oral tolerance”) The induction of specific immune tolerance provides a potential strategy for treatment of T-cell dependent immune diseases. Therefore, in depth studies into reconditions for optimal and persistent tolerance induction are mandatory. Here we report on such studies in a guinea pig model using the non-cross-reactive contact allergens nickel and chromium. Feeding per os of nickel sulfate or potassium. dichromate did not trigger systemic TDTH-effector functions. Instead, short feeding periods led to a close-dependent, and metal-specific, suppression of subsequently induced allergic contact hypersensitivity. Administration of the allergens onto the oral mucosa was most effective in the induction of immune tolerance. When first sensitizing attempts were delayed until 1 year after feeding, the degree of unresponsiveness was reduced. In contrast, with cutaneous contacts starting Shortly after the feeding period, tolerance was fully stable and undiminished for at least 2 years. Thus, in orally treated guinea pigs cutaneous contacts provide boosting tolerogenic signals, supporting the view that oral tolerance does not result from clonal deletion but from active antigen-specific immunosuppression. Indeed, unresponsiveness to cutaneous immunization could be transferred by lymphoid cells from fed guinea pigs in a metal-specific way
    corecore