282 research outputs found

    Nuclear bound states of antikaons, or quantized multiskyrmions?

    Full text link
    The spectrum of strange multibaryons is considered within the chiral soliton model using one of several possible SU(3$ quantization models (the bound state rigid oscillator version). The states with energy below that of antikaon and corresponding nucleus can be interpreted as antikaon-nucleus bound states. In the formal limit of small kaon mass the number of such states becomes large, for real value of this mass there are at least several states. For large values of binding energies interpretation of such states just as antikaon-nuclear bound states becomes more ambiguous.Comment: Corrections, amendments and additions made, references adde

    Nuclear attenuation of high energy multi-hadron systems in the string model

    Full text link
    Nuclear attenuation of the multi-hadron systems in the string model is considered. The improved two-scale model with set of parameters obtained recently for the single hadron attenuation is used for calculation of the multiplicity ratios of the one-, two- and three-hadron systems electroproduced on nuclear and deuterium targets. The comparison of the features of the one-, two- and three-hadron systems is performed. The predictions of the model for multiplicity ratios of multi-hadron systems as functions of different convenient variables are presented.Comment: 7 pages, 6 figure

    Cronin Effect in Hadron Production off Nuclei

    Full text link
    Recent data from RHIC for high-pTp_T hadrons in gold-gold collisions raised again the long standing problem of quantitatively understanding the Cronin effect, i.e. nuclear enhancement of high-pTp_T hadrons due to multiple interactions in nuclear matter. In nucleus-nucleus collisions this effect has to be reliably calculated as baseline for a signal of new physics in high-pTp_T hadron production. The only possibility to test models is to compare with available data for pApA collisions, however, all existing models for the Cronin effect rely on a fit to the data to be explained. We develop a phenomenological description based on the light-cone QCD-dipole approach which allows to explain available data without fitting to them and to provide predictions for pApA collisions at RHIC and LHC. We point out that the mechanism causing Cronin effect drastically changes between the energies of fixed target experiments and RHIC-LHC. High-pTp_T hadrons are produced incoherently on different nucleons at low energies, whereas the production amplitudes interfere if the energy is sufficiently high.Comment: the final version to appear in Phys. Rev. Let

    Transparent Nuclei and Deuteron-Gold Collisions at RHIC

    Full text link
    The current normalization of the cross section of inclusive high-pT particle production in deuteron-gold collisions measured RHIC relies on Glauber calculations for the inelastic d-Au cross section. These calculations should be corrected for diffraction. Moreover, they miss the Gribov's inelastic shadowing which makes nuclei more transparent (color transparency). The magnitude of this effect rises with energy and it may dramatically affect the normalization of the RHIC data. We evaluate these corrections employing the light-cone dipole formalism and found a rather modest corrections for the current normalization of the d-Au data. The results of experiments insensitive to diffraction (PHENIX, PHOBOS) should be renormalized by about 20% down, while those which include diffraction (STAR), by only 10%. Such a correction completely eliminates the Cronin enhancement in the PHENIX data for pions. The largest theoretical uncertainty comes from the part of the inelastic shadowing which is related to diffractive gluon radiation, or gluon shadowing. Our estimate is adjusted to data for the triple-Pomeron coupling, however, other models do not have such a restrictions and predict much stronger gluon shadowing. Therefore, the current data for high-pT hadron production in d-Au collisions at RHIC cannot exclude in a model independent way the possibility if initial state suppression proposed by Kharzeev-Levin-McLerran. Probably the only way to settle this uncertainty is a direct measurement of the inelastic d-Au cross sections at RHIC. Also d-Au collisions with a tagged spectator nucleon may serve as a sensitive probe for nuclear transparency and inelastic shadowing. We found an illuminating quantum-mechanical effect: the nucleus acts like a lens focusing spectators into a very narrow cone.Comment: Latex 50 pages. Based on lectures given by the author at Workshop on High-pT Correlations at RHIC, Columbia University, May-June, 2003. The version to appear in PR

    Simulated annealing for generalized Skyrme models

    Full text link
    We use a simulated annealing algorithm to find the static field configuration with the lowest energy in a given sector of topological charge for generalized SU(2) Skyrme models. These numerical results suggest that the following conjecture may hold: the symmetries of the soliton solutions of extended Skyrme models are the same as for the Skyrme model. Indeed, this is verified for two effective Lagrangians with terms of order six and order eight in derivatives of the pion fields respectively for topological charges B=1 up to B=4. We also evaluate the energy of these multi-skyrmions using the rational maps ansatz. A comparison with the exact numerical results shows that the reliability of this approximation for extended Skyrme models is almost as good as for the pure Skyrme model. Some details regarding the implementation of the simulated annealing algorithm in one and three spatial dimensions are provided.Comment: 14 pages, 6 figures, added 2 reference

    Large Rapidity Gap Processes in Proton-Nucleus Collisions

    Full text link
    The cross sections for a variety of channels of proton-nucleus interaction associated with large gaps in rapidity are calculated within the Glauber-Gribov theory. We found inelastic shadowing corrections to be dramatically enhanced for such events. We employ the light-cone dipole formalism which allows to calculate the inelastic corrections to all orders of the multiple interaction. Although Gribov corrections are known to make nuclear matter more transparent, we demonstrate that in some instances they lead to an opaqueness. Numerical calculations are performed for the energies of the HERA-B experiment, and the RHIC-LHC colliders.Comment: 19 page

    Mass splittings of nuclear isotopes in chiral soliton approach

    Full text link
    The differences of the masses of nuclear isotopes with atomic numbers between \~10 and ~30 can be described within the chiral soliton approach in satisfactory agreement with data. Rescaling of the model is necessary for this purpose - decrease of the Skyrme constant by about 30%, providing the "nuclear variant" of the model. The asymmetric term in Weizsaecker-Bethe- Bacher mass formula for nuclei can be obtained as the isospin dependent quantum correction to the nucleus energy. Some predictions for the binding energies of neutron rich nuclides are made in this way, from, e.g. Be-16 and B-19 to Ne-31 and Na-32. Neutron rich nuclides with high values of isospin are unstable relative to strong interactions. The SK4 (Skyrme) variant of the model, as well as SK6 variant (6-th order term in chiral derivatives in the lagrangian as solitons stabilizer) are considered, and the rational map approximation is used to describe multiskyrmions.Comment: 16 pages, 10 tables, 2 figures. Figures are added and few misprints are removed. Submitted to Phys. Atom. Nucl. (Yad. Fiz.

    Semiclassical quantization of SU(3) skyrmions

    Get PDF
    Semiclassical quantization of the SU(3)-skyrmions is performed by means of the collective coordinate method. The quantization condition known for the SU(2)-solitons quantized with SU(3) collective coordinates is generalized for the SU(3) skyrmions with strangeness content different from zero. Quantization of the dipole-type configuration with large strangeness content found recently is considered as an example, the spectrum and the mass splitting of the quantized states are estimated. The energy and baryon number density of SU(3) skyrmions are presented in the form emphasizing their symmetry in different SU(2) subgroups of SU(3), and the lower boundary for the static energy of SU(3) skyrmions is derived.Comment: 16 pages, 2 figures (available upon request). Submitted to JETP on May 6, 1997; in print. A preliminary short version of this paper is hep-th/960916

    Flavored exotic multibaryons and hypernuclei in topological soliton models

    Full text link
    The energies of baryon states with positive strangeness, or anti-charm (-beauty) are estimated in chiral soliton approach, in the "rigid oscillator" version of the bound state soliton model proposed by Klebanov and Westerberg. Positive strangeness states can appear as relatively narrow nuclear levels (Theta-hypernuclei), the states with heavy anti-flavors can be bound with respect to strong interactions in the original Skyrme variant of the model (SK4 variant). The binding energies of anti-flavored states are estimated also in the variant of the model with 6-th order term in chiral derivatives in the lagrangian as solitons stabilizer (SK6 variant). The latter variant is less attractive, and nuclear states with anti-charm or anti-beauty can be unstable relative to strong interactions. The chances to get bound hypernuclei with heavy antiflavors are greater within "nuclear variant" of the model with rescaled model parameter (Skyrme constant e or e' decreased by ~30%) which is expected to be valid for baryon numbers greater than B ~10. The rational map approximation is used to describe multiskyrmions with baryon number up to ~30 and to calculate the quantities necessary for their quantization (moments of inertia, sigma-term, etc.).Comment: 24 pages, 7 table
    corecore