54,675 research outputs found

    Engineering Negative Differential Conductance with the Cu(111) Surface State

    Full text link
    Low-temperature scanning tunneling microscopy and spectroscopy are employed to investigate electron tunneling from a C60-terminated tip into a Cu(111) surface. Tunneling between a C60 orbital and the Shockley surface states of copper is shown to produce negative differential conductance (NDC) contrary to conventional expectations. NDC can be tuned through barrier thickness or C60 orientation up to complete extinction. The orientation dependence of NDC is a result of a symmetry matching between the molecular tip and the surface states.Comment: 5 pages, 4 figures, 1 tabl

    Mesoscopic Kondo effect of a quantum dot embedded in an Aharonov-Bohm ring with intradot spin-flip scattering

    Full text link
    We study the Kondo effect in a quantum dot embedded in a mesoscopic ring taking into account intradot spin-flip scattering RR. Based on the finite-UU slave-boson mean-field approach, we find that the Kondo peak in the density of states is split into two peaks by this coherent spin-flip transition, which is responsible for some interesting features of the Kondo-assisted persistent current circulating the ring: (1) strong suppression and crossover to a sine function form with increasing RR; (2) appearance of a "hump" in the RR-dependent behavior for odd parity. RR-induced reverse of the persistent current direction is also observed for odd parity.Comment: 7 pages,6 figures, to be published by Europhys. Let

    Quantum Phase Transitions in Josephson Junction Chains

    Full text link
    We investigate the quantum phase transition in a one-dimensional chain of ultra-small superconducting grains, considering both the self- and junction capacitances. At zero temperature, the system is transformed into a two-dimensional system of classical vortices, where the junction capacitance introduces anisotropy in the interaction between vortices. This leads to the superconductor-insulator transition of the Berezinskii-Kosterlitz-Thouless type, as the ratios of the Josephson coupling energy to the charging energies are varied. It is found that the junction capacitance plays a role similar to that of dissipation and tends to suppress quantum fluctuations; nevertheless the insulator region survives even for arbitrarily large values of the junction capacitance.Comment: REVTeX+5 EPS figures, To appear in PRB Rapid

    Inelastic scattering in a monolayer graphene sheet; a weak-localization study

    Full text link
    Charge carriers in a graphene sheet, a single layer of graphite, exhibit much distinctive characteristics to those in other two-dimensional electronic systems because of their chiral nature. In this report, we focus on the observation of weak localization in a graphene sheet exfoliated from a piece of natural graphite and nano-patterned into a Hall-bar geometry. Much stronger chiral-symmetry-breaking elastic intervalley scattering in our graphene sheet restores the conventional weak localization. The resulting carrier-density and temperature dependence of the phase coherence length reveal that the electron-electron interaction including a direct Coulomb interaction is the main inelastic scattering factor while electron-hole puddles enhance the inelastic scattering near the Dirac point.Comment: 12 pages, 3 figures, submitted to PR

    Cosmological Luminosity Evolution of QSO/AGN Population

    Full text link
    We apply the observed optical/X-ray spectral states of the Galactic black hole candidates (GBHCs) to the cosmological QSO luminosity evolution under the assumptions that QSOs and GBHCs are powered by similar accretion processes and that their emission mechanisms are also similar. The QSO luminosity function (LF) evolution in various energy bands is strongly affected by the spectral evolution which is tightly correlated with the luminosity evolution. We generate a random sample of QSOs born nearly synchronously by allowing the QSOs to have redshifts in a narrow range around an initial high redshift, black hole masses according to a power-law, and mass accretion rates near Eddington rates. The QSOs evolve as a single long-lived population on the cosmological time scale. The pure luminosity evolution results in distinct luminosity evolution features due to the strong spectral evolution. Most notably, different energy bands (optical/UV, soft X-ray, and hard X-ray) show different evolutionary trends and the hard X-ray LF in particular shows an apparent reversal of the luminosity evolution (from decreasing to increasing luminosity) at low redshifts, which is not seen in the conventional pure luminosity evolution scenario without spectral evolution. The resulting mass function of black holes (BHs), which is qualitatively consistent with the observed QSO LF evolution, shows that QSO remnants are likely to be found as BHs with masses in the range 10**8-5x10**10 solar masses. The long-lived single population of QSOs are expected to leave their remnants as supermassive BHs residing in rare, giant elliptical galaxies.Comment: 9 pages, 2 figures, ApJ

    Signature of high temperature superconductivity in electron doped Sr2IrO4

    Full text link
    Sr2IrO4 was predicted to be a high temperature superconductor upon electron doping since it highly resembles the cuprates in crystal structure, electronic structure and magnetic coupling constants. Here we report a scanning tunneling microscopy/spectroscopy (STM/STS) study of Sr2IrO4 with surface electron doping by depositing potassium (K) atoms. At the 0.5-0.7 monolayer (ML) K coverage, we observed a sharp, V-shaped gap with about 95% loss of density of state (DOS) at EFand visible coherence peaks. The gap magnitude is 25-30 meV for 0.5-0.6 ML K coverage and it closes around 50 K. These behaviors exhibit clear signature of superconductivity. Furthermore, we found that with increased electron doping, the system gradually evolves from an insulating state to a normal metallic state, via a pseudogap-like state and possible superconducting state. Our data suggest possible high temperature superconductivity in electron doped Sr2IrO4, and its remarkable analogy to the cuprates.Comment: 11 pages, 5 figure

    Slow relaxation in the Ising model on a small-world network with strong long-range interactions

    Full text link
    We consider the Ising model on a small-world network, where the long-range interaction strength J2J_2 is in general different from the local interaction strength J1J_1, and examine its relaxation behaviors as well as phase transitions. As J2/J1J_2/J_1 is raised from zero, the critical temperature also increases, manifesting contributions of long-range interactions to ordering. However, it becomes saturated eventually at large values of J2/J1J_2/J_1 and the system is found to display very slow relaxation, revealing that ordering dynamics is inhibited rather than facilitated by strong long-range interactions. To circumvent this problem, we propose a modified updating algorithm in Monte Carlo simulations, assisting the system to reach equilibrium quickly.Comment: 5 pages, 5 figure

    Skyrmions in a Doped Antiferromagnet

    Full text link
    Magnetization and magnetoresistance have been measured in insulating antiferromagnetic La_{2}Cu_{0.97}Li_{0.03}O_{4} over a wide range of temperatures, magnetic fields, and field orientations. The magnetoresistance step associated with a weak ferromagnetic transition exhibits a striking nonmonotonic temperature dependence, consistent with the presence of skyrmions.Comment: 4+ pages, 3 figures (some low resolution), supplementary material (3 pages); discussion expanded, references added; as publishe
    corecore