419 research outputs found

    Calculation of Infrared-Divergent Feynman Diagrams with Zero Mass Threshold

    Get PDF
    Two-loop vertex Feynman diagrams with infrared and collinear divergences are investigated by two independent methods. On the one hand, a method of calculating Feynman diagrams from their small momentum expansion extended to diagrams with zero mass thresholds is applied. On the other hand, a numerical method based on a two-fold integral representation is used. The application of the latter method is possible by using lightcone coordinates in the parallel space. The numerical data obtained with the two methods are in impressive agreement.Comment: 20 pages, Latex with epsf-figures, References updated, to appear in Z.Phys.

    On the Brownian gas: a field theory with a Poissonian ground state

    Full text link
    As a first step towards a successful field theory of Brownian particles in interaction, we study exactly the non-interacting case, its combinatorics and its non-linear time-reversal symmetry. Even though the particles do not interact, the field theory contains an interaction term: the vertex is the hallmark of the original particle nature of the gas and it enforces the constraint of a strictly positive density field, as opposed to a Gaussian free field. We compute exactly all the n-point density correlation functions, determine non-perturbatively the Poissonian nature of the ground state and emphasize the futility of any coarse-graining assumption for the derivation of the field theory. We finally verify explicitly, on the n-point functions, the fluctuation-dissipation theorem implied by the time-reversal symmetry of the action.Comment: 31 page

    The uses of Connes and Kreimer's algebraic formulation of renormalization theory

    Get PDF
    We show how, modulo the distinction between the antipode and the "twisted" or "renormalized" antipode, Connes and Kreimer's algebraic paradigm trivializes the proofs of equivalence of the (corrected) Dyson-Salam, Bogoliubov-Parasiuk-Hepp and Zimmermann procedures for renormalizing Feynman amplitudes. We discuss the outlook for a parallel simplification of computations in quantum field theory, stemming from the same algebraic approach.Comment: 15 pages, Latex. Minor changes, typos fixed, 2 references adde

    The Hopf Algebra of Renormalization, Normal Coordinates and Kontsevich Deformation Quantization

    Full text link
    Using normal coordinates in a Poincar\'e-Birkhoff-Witt basis for the Hopf algebra of renormalization in perturbative quantum field theory, we investigate the relation between the twisted antipode axiom in that formalism, the Birkhoff algebraic decomposition and the universal formula of Kontsevich for quantum deformation.Comment: 21 pages, 15 figure

    Dimensional renormalization: ladders to rainbows

    Get PDF
    Renormalization factors are most easily extracted by going to the massless limit of the quantum field theory and retaining only a single momentum scale. We derive factors and renormalized Green functions to all orders in perturbation theory for rainbow graphs and vertex (or scattering diagrams) at zero momentum transfer, in the context of dimensional renormalization, and we prove that the correct anomalous dimensions for those processes emerge in the limit D -> 4.Comment: RevTeX, no figure

    Heavy-Higgs Lifetime at Two Loops

    Get PDF
    The Standard-Model Higgs boson with mass MH>>2MZ M_H >> 2M_Z decays almost exclusively to pairs of WW and ZZ bosons. We calculate the dominant two-loop corrections of O(GF2MH4) O( G_F^2 M_H^4 ) to the partial widths of these decays. In the on-mass-shell renormalization scheme, the correction factor is found to be 1+14.6 1 + 14.6 % (M_H/TeV)^2 + 16.9 % (M_H/TeV)^4 , where the second term is the one-loop correction. We give full analytic results for all divergent two-loop Feynman diagrams. A subset of finite two-loop vertex diagrams is computed to high precision using numerical techniques. We find agreement with a previous numerical analysis. The above correction factor is also in line with a recent lattice calculation.Comment: 26 pages, 6 postscript figures. The complete paper including figures is also available via WWW at http://www.physik.tu-muenchen.de/tumphy/d/T30d/PAPERS/TUM-HEP-247-96.ps.g

    Exponential renormalization

    Full text link
    Moving beyond the classical additive and multiplicative approaches, we present an "exponential" method for perturbative renormalization. Using Dyson's identity for Green's functions as well as the link between the Faa di Bruno Hopf algebra and the Hopf algebras of Feynman graphs, its relation to the composition of formal power series is analyzed. Eventually, we argue that the new method has several attractive features and encompasses the BPHZ method. The latter can be seen as a special case of the new procedure for renormalization scheme maps with the Rota-Baxter property. To our best knowledge, although very natural from group-theoretical and physical points of view, several ideas introduced in the present paper seem to be new (besides the exponential method, let us mention the notions of counterfactors and of order n bare coupling constants).Comment: revised version; accepted for publication in Annales Henri Poincar

    A Short Survey of Noncommutative Geometry

    Full text link
    We give a survey of selected topics in noncommutative geometry, with some emphasis on those directly related to physics, including our recent work with Dirk Kreimer on renormalization and the Riemann-Hilbert problem. We discuss at length two issues. The first is the relevance of the paradigm of geometric space, based on spectral considerations, which is central in the theory. As a simple illustration of the spectral formulation of geometry in the ordinary commutative case, we give a polynomial equation for geometries on the four dimensional sphere with fixed volume. The equation involves an idempotent e, playing the role of the instanton, and the Dirac operator D. It expresses the gamma five matrix as the pairing between the operator theoretic chern characters of e and D. It is of degree five in the idempotent and four in the Dirac operator which only appears through its commutant with the idempotent. It determines both the sphere and all its metrics with fixed volume form. We also show using the noncommutative analogue of the Polyakov action, how to obtain the noncommutative metric (in spectral form) on the noncommutative tori from the formal naive metric. We conclude on some questions related to string theory.Comment: Invited lecture for JMP 2000, 45

    Non-Linear Algebra and Bogolubov's Recursion

    Full text link
    Numerous examples are given of application of Bogolubov's forest formula to iterative solutions of various non-linear equations: one and the same formula describes everything, from ordinary quadratic equation to renormalization in quantum field theory.Comment: LaTex, 21 page

    Two-Loop Diagrammatics in a Self-Dual Background

    Full text link
    Diagrammatic rules are developed for simplifying two-loop QED diagrams with propagators in a constant self-dual background field. This diagrammatic analysis, using dimensional regularization, is used to explain how the fully renormalized two-loop Euler-Heisenberg effective Lagrangian for QED in a self-dual background field is naturally expressed in terms of one-loop diagrams. The connection between the two-loop and one-loop vacuum diagrams in a background field parallels a corresponding connection for free vacuum diagrams, without a background field, which can be derived by simple algebraic manipulations. It also mirrors similar behavior recently found for two-loop amplitudes in N=4 SUSY Yang-Mills theory.Comment: 16 pp, Latex, Axodra
    • …
    corecore