3,731 research outputs found
The Deadlock of the EU Budget: An Economic Analysis of Ways In and Ways Out
Most of the EU budget is spent on redistribution. Large sums of money are transferred from the member state governments to Brussels and back to these governments. Some member states end up as net receivers and some as net payers. Most economists agree that the resources of the budget should be reallocated from redistribution towards the provision of more Union-wide public goods. While such appeals have been made for years, little change has been observed. We want to explain why. We propose to distinguish two periods. In the early years of the Community, some larger member states or coalitions of member states were able to credibly threaten to terminate membership if their claims on budgetary resources were not fulfilled. Their activity has created a redistributive status quo to which, in the second period, the budgetary rules of the Treaty were applied. It is shown that the combination of the Council’s qualified majority rule on the expenditure side and the unanimity rule on the revenue side and on the programs are largely responsible for creating a deadlock in the status quo with large redistribution and few Union-wide public goods. In order to break the deadlock, a complementary budget procedure is proposed on the basis of voting by veto.
Spatially distributed water-balance and meteorological data from the Wolverton catchment, Sequoia National Park, California
Accurate water-balance measurements in the seasonal, snow-dominated Sierra Nevada are important for forest and downstream water management. However, few sites in the southern Sierra offer detailed records of the spatial and temporal patterns of snowpack and soil-water storage and the fluxes affecting them, i.e., precipitation as rain and snow, snowmelt, evapotranspiration, and runoff. To explore these stores and fluxes we instrumented the Wolverton basin (2180-2750 m) in Sequoia National Park with distributed, continuous sensors. This 2006-2016 record of snow depth, soil moisture and soil temperature, and meteorological data quantifies the hydrologic inputs and storage in a mostly undeveloped catchment. Clustered sensors record lateral differences with regards to aspect and canopy cover at approximately 2250 and 2625 m in elevation, where two meteorological stations are installed. Meteorological stations record air temperature, relative humidity, radiation, precipitation, wind speed and direction, and snow depth. Data are available at hourly intervals by water year (1 October-30 September) in non-proprietary formats from online data repositories (https://doi.org/10.6071/M3S94T)
Recent advances in malaria genomics and epigenomics
Malaria continues to impose a significant disease burden on low- and middle-income countries in the tropics. However, revolutionary progress over the last 3Â years in nucleic acid sequencing, reverse genetics, and post-genome analyses has generated step changes in our understanding of malaria parasite (Plasmodium spp.) biology and its interactions with its host and vector. Driven by the availability of vast amounts of genome sequence data from Plasmodium species strains, relevant human populations of different ethnicities, and mosquito vectors, researchers can consider any biological component of the malarial process in isolation or in the interactive setting that is infection. In particular, considerable progress has been made in the area of population genomics, with Plasmodium falciparum serving as a highly relevant model. Such studies have demonstrated that genome evolution under strong selective pressure can be detected. These data, combined with reverse genetics, have enabled the identification of the region of the P. falciparum genome that is under selective pressure and the confirmation of the functionality of the mutations in the kelch13 gene that accompany resistance to the major frontline antimalarial, artemisinin. Furthermore, the central role of epigenetic regulation of gene expression and antigenic variation and developmental fate in P. falciparum is becoming ever clearer. This review summarizes recent exciting discoveries that genome technologies have enabled in malaria research and highlights some of their applications to healthcare. The knowledge gained will help to develop surveillance approaches for the emergence or spread of drug resistance and to identify new targets for the development of antimalarial drugs and perhaps vaccines
The Deadlock of the EU Budget: An Economic Analysis of Ways In and Ways Out
Most of the EU budget is spent on redistribution. Large sums of money are transferred from the member state governments to Brussels and back to these governments. Some member states end up as net receivers and some as net payers. Most economists agree that the resources of the budget should be reallocated from redistribution towards the provision of more Union-wide public goods. While such appeals have been made for years, little change has been observed. We want to explain why. We propose to distinguish two periods. In the early years of the Community, some larger member states or coalitions of member states were able to credibly threaten to terminate membership if their claims on budgetary resources were not fulfilled. Their activity has created a redistributive status quo to which, in the second period, the budgetary rules of the Treaty were applied. It is shown that the combination of the Council's qualified majority rule on the expenditure side and the unanimity rule on the revenue side and on the programs are largely responsible for creating a deadlock in the status quo with large redistribution and few Union-wide public goods. In order to break the deadlock, a complementary budget procedure is proposed on the basis of voting by veto
Generalized Parton Distributions of ^3He
A realistic microscopic calculation of the unpolarized quark Generalized
Parton Distribution (GPD) of the nucleus is presented. In
Impulse Approximation, is obtained as a convolution between the GPD of
the internal nucleon and the non-diagonal spectral function, describing
properly Fermi motion and binding effects. The proposed scheme is valid at low
values of , the momentum transfer to the target, the most relevant
kinematical region for the coherent channel of hard exclusive processes. The
obtained formula has the correct forward limit, corresponding to the standard
deep inelastic nuclear parton distributions, and first moment, giving the
charge form factor of . Nuclear effects, evaluated by a modern realistic
potential, are found to be larger than in the forward case. In particular, they
increase with increasing the momentum transfer when the asymmetry of the
process is kept fixed, and they increase with the asymmetry at fixed momentum
transfer. Another relevant feature of the obtained results is that the nuclear
GPD cannot be factorized into a -dependent and a
-independent term, as suggested in prescriptions proposed for finite
nuclei. The size of nuclear effects reaches 8 % even in the most important part
of the kinematical range under scrutiny. The relevance of the obtained results
to study the feasibility of experiments is addressed.Comment: 23 pages, 8 figures; Discussion in section II enlarged; discussion in
section IV shortened. Final version accepted by Phys. Rev.
Novel structural features of the ripple phase of phospholipids
We have calculated the electron density maps of the ripple phase of
dimyristoylphosphatidylcholine (DMPC) and palmitoyl-oleoyl phosphatidylcholine
(POPC) multibilayers at different temperatures and fixed relative humidity. Our
analysis establishes, for the first time, the existence of an average tilt of
the hydrocarbon chains of the lipid molecules along the direction of the ripple
wave vector, which we believe is responsible for the occurrence of asymmetric
ripples in these systems
Deductive Verification of Unmodified Linux Kernel Library Functions
This paper presents results from the development and evaluation of a
deductive verification benchmark consisting of 26 unmodified Linux kernel
library functions implementing conventional memory and string operations. The
formal contract of the functions was extracted from their source code and was
represented in the form of preconditions and postconditions. The correctness of
23 functions was completely proved using AstraVer toolset, although success for
11 functions was achieved using 2 new specification language constructs.
Another 2 functions were proved after a minor modification of their source
code, while the final one cannot be completely proved using the existing memory
model. The benchmark can be used for the testing and evaluation of deductive
verification tools and as a starting point for verifying other parts of the
Linux kernel.Comment: 18 pages, 2 tables, 6 listings. Accepted to ISoLA 2018 conference.
Evaluating Tools for Software Verification trac
Triphilic ionic-liquid mixtures: fluorinated and non-fluorinated aprotic ionic-liquid mixtures
We present here the possibility of forming triphilic mixtures from alkyl- and fluoroalkylimidazolium ionic liquids, thus, macroscopically homogeneous mixtures for which instead of the often observed two domainspolar and nonpolarthree stable microphases are present: polar, lipophilic, and fluorous ones. The fluorinated side chains of the cations indeed self-associate and form domains that are segregated from those of the polar and alkyl domains. To enable miscibility, despite the generally preferred macroscopic separation between fluorous and alkyl moieties, the importance of strong hydrogen bonding is shown. As the long-range structure in the alkyl and fluoroalkyl domains is dependent on the composition of the liquid, we propose that the heterogeneous, triphilic structure can be easily tuned by the molar ratio of the components. We believe that further development may allow the design of switchable, smart liquids that change their properties in a predictable way according to their composition or even their environment
- …