129 research outputs found

    Conceptual Design of the Modular Detector and Readout System for the CMB-S4 survey experiment

    Full text link
    We present the conceptual design of the modular detector and readout system for the Cosmic Microwave Background Stage 4 (CMB-S4) ground-based survey experiment. CMB-S4 will map the cosmic microwave background (CMB) and the millimeter-wave sky to unprecedented sensitivity, using 500,000 superconducting detectors observing from Chile and Antarctica to map over 60 percent of the sky. The fundamental building block of the detector and readout system is a detector module package operated at 100 mK, which is connected to a readout and amplification chain that carries signals out to room temperature. It uses arrays of feedhorn-coupled orthomode transducers (OMT) that collect optical power from the sky onto dc-voltage-biased transition-edge sensor (TES) bolometers. The resulting current signal in the TESs is then amplified by a two-stage cryogenic Superconducting Quantum Interference Device (SQUID) system with a time-division multiplexer to reduce wire count, and matching room-temperature electronics to condition and transmit signals to the data acquisition system. Sensitivity and systematics requirements are being developed for the detector and readout system over a wide range of observing bands (20 to 300 GHz) and optical powers to accomplish CMB-S4's science goals. While the design incorporates the successes of previous generations of CMB instruments, CMB-S4 requires an order of magnitude more detectors than any prior experiment. This requires fabrication of complex superconducting circuits on over 10 square meters of silicon, as well as significant amounts of precision wiring, assembly and cryogenic testing.Comment: 25 pages, 15 figures, presented at and published in the proceedings of SPIE Astronomical Telescopes and Instrumentation 202

    Pollutant formation and emissions from cement kiln stack using a solid recovered fuel from municipal solid waste

    Get PDF
    The thermal decomposition of a Solid Recovered Fuel (SRF) has been studied by two techniques. First, laboratory-scale experiments were performed in a horizontal furnace in which different atmospheres are studied to analyze the dioxins and furans (PCDD/Fs) evolved from the decomposition of the material. Sulfur presence is revealed to be important in PCDD/Fs formation. In the second technique, the emission of various pollutants (PAHs, PCDD/Fs, metals, acid gases …) were determined in a cement kiln fed on different proportions of SRF material, and where a maximum feed rate of 15000 kg SRF/h was achieved. In the laboratory furnace the dioxin toxicity revealed a maximum when the amount of oxygen in the atmosphere increased until approximately stoichiometric conditions. In the cement kiln, all emitted pollutants are under the legal limits. No correlation between SRF input and metal emission was observed.Support for this work was provided by CEMEX ESPANA, S.A., a company owned by the CEMEX group (http://www.cemex.com). Authors acknowledge the financial support for this work provided by PROMETEO/2009/043/FEDER and ACOMP2010/075 of Generalitat Valenciana (Spain) and CTQ2008-05520 (Spanish MCI)
    • …
    corecore