8,429 research outputs found
"The Predication Semantics Model: The Role of Predicate: Class in Text Comprehension and Recall"
This paper presents and tests the predication semantics model, a computational model of text comprehension. It goes beyond previous case grammar approaches to text comprehension in employing a propositional rather than a rigid hierarchical tree notion, attempting to maintain a coherent set of propositions in working memory. The authors' assertion is that predicate class contains semantic information that readers use to make generally accurate predictions of a given proposition. Thus, the main purpose of the model-which works as a series of input and reduction cycles-is to explore the extent to which predicate categories play a role in reading comprehension and recall. In the reduction phase of the model, the propositions entered into the memory during the input phase are decreased while coherence is maintained among them. In an examination of the working memory at the end of each cycle, the computational model maintained coherence for 70% of cycles. The model appeared prone to serial dependence in errors: the coherence problem appears to occur because (unlike real readers) the simulation docs not reread when necessary. Overall, the experiment suggested that the predication semantics model is robust. The results suggested that the model emulates a primary process in text comprehension: predicate categories provide semantic information that helps to initiate and control automatic processes in reading, and allows people to grasp the gist of a text even when they have only minimal background knowledge. While needing refinement in several areas presenting minor problems-for example, the lack of a sufficiently complex memory to ensure that when the simulation of the model goes wrong it does not, as at present, stay wrong for successive intervals-the success of the model even at the current restrictive level of detail demonstrates the importance of the semantic information in predicate categories.
Passive Cooling of a Micromechanical Oscillator with a Resonant Electric Circuit
We cool the fundamental mode of a miniature cantilever by capacitively
coupling it to a driven rf resonant circuit. Cooling results from the rf
capacitive force, which is phase shifted relative to the cantilever motion. We
demonstrate the technique by cooling a 7 kHz cantilever from room temperature
to 45 K, obtaining reasonable agreement with a model for the cooling, damping,
and frequency shift. Extending the method to higher frequencies in a cryogenic
system could enable ground state cooling and may prove simpler than related
optical experiments in a low temperature apparatus.Comment: 4 pages, 4 figures; minor changes to match published versio
Experimentally-calibrated population of models predicts and explains inter-subject variability in cardiac cellular\ud electrophysiology
Cellular and ionic causes of variability in the electrophysiological activity of hearts from individuals of the same species are unknown. However, improved understanding of this variability is key to enable prediction of the response of specific hearts to disease and therapies. Limitations of current mathematical modeling and experimental techniques hamper our ability to provide insight into variability. Here we describe a methodology to unravel the ionic determinants of inter-subject variability exhibited in experimental recordings, based on the construction and calibration of populations of models. We illustrate the methodology through its application to rabbit Purkinje preparations, due to their importance in arrhythmias and safety pharmacology assessment. We consider a set of equations describing the biophysical processes underlying rabbit Purkinje electrophysiology and we construct a population of over 10,000 models by randomly assigning specific parameter values corresponding to ionic current conductances and kinetics. We calibrate the model population by closely comparing simulation output and experimental recordings at three pacing frequencies. We show that 213 of the 10,000 candidate models are fully consistent with the experimental dataset. Ionic properties in the 213 models cover a wide range of values, including differences up to ±100% in several conductances. Partial correlation analysis shows that particular combinations of ionic properties determine the precise shape, amplitude and rate dependence of specific action potentials. Finally, we demonstrate that the population of models calibrated using data obtained under physiological conditions quantitatively predicts the action potential duration prolongation caused by exposure to four concentrations of the potassium channel blocker dofetilide
Gender Differences in Response to a School-Based Mindfulness Training Intervention for Early Adolescents
Mindfulness training has been used to improve emotional wellbeing in early adolescents. However, little is known about treatment outcome moderators, or individual differences that may differentially impact responses to treatment. The current study focused on gender as a potential moderator for affective outcomes in response to school-based mindfulness training. Sixth grade students (N = 100) were randomly assigned to either the six weeks of mindfulness meditation or the active control group as part of a history class curriculum. Participants in the mindfulness meditation group completed short mindfulness meditation sessions four to five times per week, in addition to didactic instruction (Asian history). The control group received matched experiential activity in addition to didactic instruction (African history) from the same teacher with no meditation component. Self-reported measures of emotional wellbeing/affect, mindfulness, and self-compassion were obtained at pre and post intervention. Meditators reported greater improvement in emotional wellbeing compared to those in the control group. Importantly, gender differences were detected, such that female meditators reported greater increases in positive affect compared to females in the control group, whereas male meditators and control males displayed equivalent gains. Uniquely among females but not males, increases in self-reported self-compassion were associated with improvements in affect. These findings support the efficacy of school-based mindfulness interventions, and interventions tailored to accommodate distinct developmental needs of female and male adolescents
A preliminary design study of a microparticle accelerator final report, 30 jan. - 13 apr. 1964
Design study for 2MV microparticle accelerato
High resolution characterisation of microstructural evolution in RbFeSe crystals on annealing
The superconducting and magnetic properties of phase-separated
AFeSe compounds are known to depend on post-growth heat
treatments and cooling profiles. This paper focusses on the evolution of
microstructure on annealing, and how this influences the superconducting
properties of RbFeSe crystals. We find that the minority phase in
the as-grown crystal has increased unit cell anisotropy (c/a ratio), reduced Rb
content and increased Fe content compared to the matrix. The microstructure is
rather complex, with two-phase mesoscopic plate-shaped features aligned along
{113} habit planes. The minority phase are strongly facetted on the {113}
planes, which we have shown to be driven by minimising the volume strain energy
introduced as a result of the phase transformation. Annealing at 488K results
in coarsening of the mesoscopic plate-shaped features and the formation of a
third distinct phase. The subtle differences in structure and chemistry of the
minority phase(s) in the crystals are thought to be responsible for changes in
the superconducting transition temperature. In addition, scanning photoemission
microscopy has clearly shown that the electronic structure of the minority
phase has a higher occupied density of states of the low binding energy Fe3d
orbitals, characteristic of crystals that exhibit superconductivity. This
demonstrates a clear correlation between the Fe-vacancy-free phase with high
c/a ratio and the electronic structure characteristics of the superconducting
phase.Comment: 6 figures v2 is exactly the same as v1. The typesetting errors in the
abstract have been correcte
Randomized Benchmarking of Quantum Gates
A key requirement for scalable quantum computing is that elementary quantum
gates can be implemented with sufficiently low error. One method for
determining the error behavior of a gate implementation is to perform process
tomography. However, standard process tomography is limited by errors in state
preparation, measurement and one-qubit gates. It suffers from inefficient
scaling with number of qubits and does not detect adverse error-compounding
when gates are composed in long sequences. An additional problem is due to the
fact that desirable error probabilities for scalable quantum computing are of
the order of 0.0001 or lower. Experimentally proving such low errors is
challenging. We describe a randomized benchmarking method that yields estimates
of the computationally relevant errors without relying on accurate state
preparation and measurement. Since it involves long sequences of randomly
chosen gates, it also verifies that error behavior is stable when used in long
computations. We implemented randomized benchmarking on trapped atomic ion
qubits, establishing a one-qubit error probability per randomized pi/2 pulse of
0.00482(17) in a particular experiment. We expect this error probability to be
readily improved with straightforward technical modifications.Comment: 13 page
High Purity Pion Beam at TRIUMF
An extension of the TRIUMF M13 low-energy pion channel designed to suppress
positrons based on an energy-loss technique is described. A source of beam
channel momentum calibration from the decay pi+ --> e+ nu is also described.Comment: 5 page
- …