8,429 research outputs found

    "The Predication Semantics Model: The Role of Predicate: Class in Text Comprehension and Recall"

    Get PDF
    This paper presents and tests the predication semantics model, a computational model of text comprehension. It goes beyond previous case grammar approaches to text comprehension in employing a propositional rather than a rigid hierarchical tree notion, attempting to maintain a coherent set of propositions in working memory. The authors' assertion is that predicate class contains semantic information that readers use to make generally accurate predictions of a given proposition. Thus, the main purpose of the model-which works as a series of input and reduction cycles-is to explore the extent to which predicate categories play a role in reading comprehension and recall. In the reduction phase of the model, the propositions entered into the memory during the input phase are decreased while coherence is maintained among them. In an examination of the working memory at the end of each cycle, the computational model maintained coherence for 70% of cycles. The model appeared prone to serial dependence in errors: the coherence problem appears to occur because (unlike real readers) the simulation docs not reread when necessary. Overall, the experiment suggested that the predication semantics model is robust. The results suggested that the model emulates a primary process in text comprehension: predicate categories provide semantic information that helps to initiate and control automatic processes in reading, and allows people to grasp the gist of a text even when they have only minimal background knowledge. While needing refinement in several areas presenting minor problems-for example, the lack of a sufficiently complex memory to ensure that when the simulation of the model goes wrong it does not, as at present, stay wrong for successive intervals-the success of the model even at the current restrictive level of detail demonstrates the importance of the semantic information in predicate categories.

    Passive Cooling of a Micromechanical Oscillator with a Resonant Electric Circuit

    Full text link
    We cool the fundamental mode of a miniature cantilever by capacitively coupling it to a driven rf resonant circuit. Cooling results from the rf capacitive force, which is phase shifted relative to the cantilever motion. We demonstrate the technique by cooling a 7 kHz cantilever from room temperature to 45 K, obtaining reasonable agreement with a model for the cooling, damping, and frequency shift. Extending the method to higher frequencies in a cryogenic system could enable ground state cooling and may prove simpler than related optical experiments in a low temperature apparatus.Comment: 4 pages, 4 figures; minor changes to match published versio

    Experimentally-calibrated population of models predicts and explains inter-subject variability in cardiac cellular\ud electrophysiology

    Get PDF
    Cellular and ionic causes of variability in the electrophysiological activity of hearts from individuals of the same species are unknown. However, improved understanding of this variability is key to enable prediction of the response of specific hearts to disease and therapies. Limitations of current mathematical modeling and experimental techniques hamper our ability to provide insight into variability. Here we describe a methodology to unravel the ionic determinants of inter-subject variability exhibited in experimental recordings, based on the construction and calibration of populations of models. We illustrate the methodology through its application to rabbit Purkinje preparations, due to their importance in arrhythmias and safety pharmacology assessment. We consider a set of equations describing the biophysical processes underlying rabbit Purkinje electrophysiology and we construct a population of over 10,000 models by randomly assigning specific parameter values corresponding to ionic current conductances and kinetics. We calibrate the model population by closely comparing simulation output and experimental recordings at three pacing frequencies. We show that 213 of the 10,000 candidate models are fully consistent with the experimental dataset. Ionic properties in the 213 models cover a wide range of values, including differences up to ±100% in several conductances. Partial correlation analysis shows that particular combinations of ionic properties determine the precise shape, amplitude and rate dependence of specific action potentials. Finally, we demonstrate that the population of models calibrated using data obtained under physiological conditions quantitatively predicts the action potential duration prolongation caused by exposure to four concentrations of the potassium channel blocker dofetilide

    Gender Differences in Response to a School-Based Mindfulness Training Intervention for Early Adolescents

    Get PDF
    Mindfulness training has been used to improve emotional wellbeing in early adolescents. However, little is known about treatment outcome moderators, or individual differences that may differentially impact responses to treatment. The current study focused on gender as a potential moderator for affective outcomes in response to school-based mindfulness training. Sixth grade students (N = 100) were randomly assigned to either the six weeks of mindfulness meditation or the active control group as part of a history class curriculum. Participants in the mindfulness meditation group completed short mindfulness meditation sessions four to five times per week, in addition to didactic instruction (Asian history). The control group received matched experiential activity in addition to didactic instruction (African history) from the same teacher with no meditation component. Self-reported measures of emotional wellbeing/affect, mindfulness, and self-compassion were obtained at pre and post intervention. Meditators reported greater improvement in emotional wellbeing compared to those in the control group. Importantly, gender differences were detected, such that female meditators reported greater increases in positive affect compared to females in the control group, whereas male meditators and control males displayed equivalent gains. Uniquely among females but not males, increases in self-reported self-compassion were associated with improvements in affect. These findings support the efficacy of school-based mindfulness interventions, and interventions tailored to accommodate distinct developmental needs of female and male adolescents

    High resolution characterisation of microstructural evolution in Rbx_{x}Fe2−y_{2-y}Se2_{2} crystals on annealing

    Full text link
    The superconducting and magnetic properties of phase-separated Ax_xFe2−y_{2-y}Se2_2 compounds are known to depend on post-growth heat treatments and cooling profiles. This paper focusses on the evolution of microstructure on annealing, and how this influences the superconducting properties of Rbx_xFe2−y_2-ySe2_2 crystals. We find that the minority phase in the as-grown crystal has increased unit cell anisotropy (c/a ratio), reduced Rb content and increased Fe content compared to the matrix. The microstructure is rather complex, with two-phase mesoscopic plate-shaped features aligned along {113} habit planes. The minority phase are strongly facetted on the {113} planes, which we have shown to be driven by minimising the volume strain energy introduced as a result of the phase transformation. Annealing at 488K results in coarsening of the mesoscopic plate-shaped features and the formation of a third distinct phase. The subtle differences in structure and chemistry of the minority phase(s) in the crystals are thought to be responsible for changes in the superconducting transition temperature. In addition, scanning photoemission microscopy has clearly shown that the electronic structure of the minority phase has a higher occupied density of states of the low binding energy Fe3d orbitals, characteristic of crystals that exhibit superconductivity. This demonstrates a clear correlation between the Fe-vacancy-free phase with high c/a ratio and the electronic structure characteristics of the superconducting phase.Comment: 6 figures v2 is exactly the same as v1. The typesetting errors in the abstract have been correcte

    Randomized Benchmarking of Quantum Gates

    Full text link
    A key requirement for scalable quantum computing is that elementary quantum gates can be implemented with sufficiently low error. One method for determining the error behavior of a gate implementation is to perform process tomography. However, standard process tomography is limited by errors in state preparation, measurement and one-qubit gates. It suffers from inefficient scaling with number of qubits and does not detect adverse error-compounding when gates are composed in long sequences. An additional problem is due to the fact that desirable error probabilities for scalable quantum computing are of the order of 0.0001 or lower. Experimentally proving such low errors is challenging. We describe a randomized benchmarking method that yields estimates of the computationally relevant errors without relying on accurate state preparation and measurement. Since it involves long sequences of randomly chosen gates, it also verifies that error behavior is stable when used in long computations. We implemented randomized benchmarking on trapped atomic ion qubits, establishing a one-qubit error probability per randomized pi/2 pulse of 0.00482(17) in a particular experiment. We expect this error probability to be readily improved with straightforward technical modifications.Comment: 13 page

    High Purity Pion Beam at TRIUMF

    Full text link
    An extension of the TRIUMF M13 low-energy pion channel designed to suppress positrons based on an energy-loss technique is described. A source of beam channel momentum calibration from the decay pi+ --> e+ nu is also described.Comment: 5 page
    • …
    corecore