799 research outputs found

    Viscosities in the Gluon-Plasma within a Quasiparticle Model

    Full text link
    A phenomenological quasiparticle model, featuring dynamically generated self-energies of excitation modes, successfully describes lattice QCD results relevant for the QCD equation of state and related quantities both at zero and non-zero net baryon density. Here, this model is extended to study bulk and shear viscosities of the gluon-plasma within an effective kinetic theory approach. In this way, the compatibility of the employed quasiparticle ansatz with the apparent low viscosities of the strongly coupled deconfined gluonic medium is shown.Comment: 4 pages, 1 figure. To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee, US

    Shear and bulk viscosities of the gluon plasma in a quasiparticle description

    Full text link
    Shear and bulk viscosities of deconfined gluonic matter are investigated within an effective kinetic theory by describing the strongly interacting medium phenomenologically in terms of quasiparticle excitations with medium-dependent self-energies. We show that the resulting transport coefficients reproduce the parametric dependencies on temperature and coupling obtained in perturbative QCD at large temperatures and small running coupling. The extrapolation into the non-perturbative regime results in a decreasing specific shear viscosity with decreasing temperature, exhibiting a minimum in the vicinity of the deconfinement transition, while the specific bulk viscosity is sizeable in this region falling off rapidly with increasing temperature. The temperature dependence of specific shear and bulk viscosities found within this quasiparticle description of the pure gluon plasma is in agreement with available lattice QCD results.Comment: Sep 2011. 24pp. 6 figures. revised journal versio

    Transport Coefficients in Gluodynamics: From Weak Coupling towards the Deconfinement Transition

    Full text link
    We study the ratio of bulk to shear viscosity in gluodynamics within a phenomenological quasiparticle model. We show that at large temperatures this ratio exhibits a quadratic dependence on the conformality measure as known from weak coupling perturbative QCD. In the region of the deconfinement transition, however, this dependence becomes linear as known from specific strongly coupled theories. The onset of the strong coupling behavior is located near the maximum of the scaled interaction measure. This qualitative behavior of the viscosity ratio is rather insensitive to details of the equation of state.Comment: Oct 2011. 3 pages. 3 figures. Contribution to the proceedings of the 19th Particles and Nuclei International Conference (PANIC11

    Edge-Magnetoplasmon Wave-Packet Revivals in the Quantum Hall Effect

    Get PDF
    The quantum Hall effect is necessarily accompanied by low-energy excitations localized at the edge of a two-dimensional electron system. For the case of electrons interacting via the long-range Coulomb interaction, these excitations are edge magnetoplasmons. We address the time evolution of localized edge-magnetoplasmon wave packets. On short times the wave packets move along the edge with classical E cross B drift. We show that on longer times the wave packets can have properties similar to those of the Rydberg wave packets that are produced in atoms using short-pulsed lasers. In particular, we show that edge-magnetoplasmon wave packets can exhibit periodic revivals in which a dispersed wave packet reassembles into a localized one. We propose the study of edge-magnetoplasmon wave packets as a tool to investigate dynamical properties of integer and fractional quantum-Hall edges. Various scenarios are discussed for preparing the initial wave packet and for detecting it at a later time. We comment on the importance of magnetoplasmon-phonon coupling and on quantum and thermal fluctuations.Comment: 18 pages, RevTex, 7 figures and 2 tables included, Fig. 5 was originally 3Mbyte and had to be bitmapped for submission to archive; in the process it acquired distracting artifacts, to upload the better version, see http://physics.indiana.edu/~uli/publ/projects.htm

    Gravitational physics with antimatter

    Full text link
    The production of low-energy antimatter provides unique opportunities to search for new physics in an unexplored regime. Testing gravitational interactions with antimatter is one such opportunity. Here a scenario based on Lorentz and CPT violation in the Standard- Model Extension is considered in which anomalous gravitational effects in antimatter could arise.Comment: 5 pages, presented at the International Conference on Exotic Atoms (EXA 2008) and the 9th International Conference on Low Energy Antiproton Physics (LEAP 2008), Vienna, Austria, September 200

    Degrees of Freedom of the Quark Gluon Plasma, tested by Heavy Mesons

    Full text link
    Heavy quarks (charm and bottoms) are one of the few probes which are sensitive to the degrees of freedom of a Quark Gluon Plasma (QGP), which cannot be revealed by lattice gauge calculations in equilibrium. Due to the rapid expansion of the QGP energetic heavy quarks do not come to an equilibrium with the QGP. Their energy loss during the propagation through the QGP medium depends strongly on the modelling of the interaction of the heavy quarks with the QGP quarks and gluons, i.e. on the assuption of the degrees of freedom of the plasma. Here we compare the results of different models, the pQCD based Monte-Carlo (MC@sHQ), the Dynamical Quasi Particle Model (DQPM) and the effective mass approach, for the drag force in a thermalized QGP and discuss the sensitivity of heavy quark energy loss on the properties of the QGP as well as on non-equilibrium dynamicsComment: proceedings symposion "New Horizons" Makutsi, South Africa, Nov 201

    No CPT Violation from Tilted Brane in Neutral Meson--Antimeson Systems

    Get PDF
    Tilted brane in theories with large compact extra dimensions leads to spontaneous symmetry breaking of the Lorentz and rotational invariance in four dimensions, as shown by Dvali and Shifman. In this brief report, we point out that the mentioned Lorentz symmetry breaking, although leading to the CPT--violating interaction terms, cannot lead to the CPT violation in the experimentally interesting KK--Kˉ{\bar K} and analogous systems.Comment: 5 pages, RevTe

    Interstellar H_2 in M 33 detected with FUSE

    Get PDF
    FUSE spectra of the four brightest H II regions in M 33 show absorption by interstellar gas in the Galaxy and in M 33. On three lines of sight molecular hydrogen in M 33 is detected. This is the first measurement of diffuse H_2 in absorption in a Local Group galaxy other than the Magellanic Clouds. A quantitative analysis is difficult because of the low signal to noise ratio and the systematic effects produced by having multiple objects in the FUSE aperture. We use the M 33 FUSE data to demonstrate in a more general manner the complexity of interpreting interstellar absorption line spectra towards multi-object background sources. We derive H_2 column densities of approximately 10^16 to 10^17 cm^{-2} along 3 sight lines (NGC 588, NGC 592, NGC 595). Because of the systematic effects, these values most likely represent upper limits and the non-detection of H_2 towards NGC 604 does not exclude the existence of significant amounts of molecular gas along this sight line

    Superrevivals in the quantum dynamics of a particle confined in a finite square well potential

    Get PDF
    We examine the revival features in wave packet dynamics of a particle confined in a finite square well potential. The possibility of tunneling modifies the revival pattern as compared to an infinite square well potential. We study the dependence of the revival times on the depth of the square well and predict the existence of superrevivals. The nature of these superrevivals is compared with similar features seen in the dynamics of wavepackets in an anharmonic oscillator potential.Comment: 8 pages in Latex two-column format with 5 figures (eps). To appear in Physical Review

    CPT, T, and Lorentz Violation in Neutral-Meson Oscillations

    Full text link
    Tests of CPT and Lorentz symmetry using neutral-meson oscillations are studied within a formalism that allows for indirect CPT and T violation of arbitrary size and is independent of phase conventions. The analysis is particularly appropriate for studies of CPT and T violation in oscillations of the heavy neutral mesons D, B_d, and B_s. The general Lorentz- and CPT-breaking standard-model extension is used to derive an expression for the parameter for CPT violation. It varies in a prescribed way with the magnitude and orientation of the meson momentum and consequently also with sidereal time. Decay probabilities are presented for both uncorrelated and correlated mesons, and some implications for experiments are discussed.Comment: 11 pages, references added, accepted in Physical Review
    corecore