4,384 research outputs found

    Dynamics of gap solitons in a dipolar Bose-Einstein condensate on a three-dimensional optical lattice

    Full text link
    We suggest and study the stable disk- and cigar-shaped gap solitons of a dipolar Bose-Einstein condensate of 52^{52}Cr atoms localized in the lowest band gap by three optical-lattice (OL) potentials along orthogonal directions. The one-dimensional version of these solitons of experimental interest confined by an OL along the dipole moment direction and harmonic traps in transverse directions is also considered. Important dynamics of (i) breathing oscillation of a gap soliton upon perturbation and (ii) dragging of a gap soliton by a moving lattice along axial zz direction demonstrates the stability of gap solitons. A movie clip of dragging of three-dimensional gap soliton is included.Comment: To see the dragging movie clip please download sourc

    Dynamics of quasi-one-dimensional bright and vortex solitons of a dipolar Bose-Einstein condensate with repulsive atomic interaction

    Full text link
    By numerical and variational analysis of the three-dimensional Gross-Pitaevskii equation we study the formation and dynamics of bright and vortex-bright solitons in a cigar-shaped dipolar Bose-Einstein condensate for large repulsive atomic interactions. Phase diagram showing the region of stability of the solitons is obtained. We also study the dynamics of breathing oscillation of the solitons as well as the collision dynamics of two solitons at large velocities. Two solitons placed side-by-side at rest coalesce to form a stable bound soliton molecule due to dipolar attraction.Comment: To obtain the included video clips S1, S2, S3 and S4, please download sourc

    Universal scaling in BCS superconductivity in two dimensions in non-s waves

    Full text link
    The solutions of a renormalized BCS model are studied in two space dimensions in ss, pp and dd waves for finite-range separable potentials. The gap parameter, the critical temperature TcT_c, the coherence length ξ\xi and the jump in specific heat at TcT_c as a function of zero-temperature condensation energy exhibit universal scalings. In the weak-coupling limit, the present model yields a small ξ\xi and large TcT_c appropriate to those for high-TcT_c cuprates. The specific heat, penetration depth and thermal conductivity as a function of temperature show universal scaling in pp and dd waves.Comment: 11 pages, LATEX, 4 postscript figures embedded using eps

    Two-component gap solitons with linear interconversion

    Full text link
    We consider one-dimensional solitons in a binary Bose-Einstein condensate with linear coupling between the components, trapped in an optical-lattice potential. The inter-species and intra-species interactions may be both repulsive or attractive. Main effects considered here are spontaneous breaking of the symmetry between components in symmetric and antisymmetric solitons, and spatial splitting between the components. These effects are studied by means of a variational approximation and numerical simulations.Comment: 4 pages, 9 figure

    Free expansion of fermionic dark solitons in a boson-fermion mixture

    Full text link
    We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic dark solitons in a trapped degenerate fermi gas mixed with a Bose-Einstein condensate in a harmonic as well as a periodic optical-lattice potential. The dark soliton with a "notch" in the probability density with a zero at the minimum is simulated numerically as a nonlinear continuation of the first vibrational excitation of the linear mean-field-hydrodynamic equations, as suggested recently for pure bosons. We study the free expansion of these dark solitons as well as the consequent increase in the size of their central notch and discuss the possibility of experimental observation of the notch after free expansion.Comment: 14 pages, 6 figure

    Two phase transitions in (s+id)-wave Bardeen-Cooper-Schrieffer superconductivity

    Full text link
    We establish universal behavior in temperature dependencies of some observables in (s+id)(s+id)-wave BCS superconductivity in the presence of a weak ss wave. There also could appear a second second-order phase transition. As temperature is lowered past the usual critical temperature TcT_c, a less ordered superconducting phase is created in dd wave, which changes to a more ordered phase in (s+id)(s+id) wave at Tc1T_{c1} (<Tc< T_c). The presence of two phase transitions manifest in two jumps in specific heat at TcT_c and Tc1T_{c1}. The temperature dependencies of susceptibility, penetration depth, and thermal conductivity also confirm the new phase transition.Comment: 6 pages, 5 post-script figures

    Variational separable expansion scheme for two-body Coulomb-scattering problems

    Full text link
    We present a separable expansion approximation method for Coulomb-like potentials which is based on Schwinger variational principle and uses Coulomb-Sturmian functions as basis states. The new scheme provides faster convergence with respect to our formerly used non-variational approach.Comment: some typos correcte

    Symbiotic gap and semi-gap solitons in Bose-Einstein condensates

    Full text link
    Using the variational approximation and numerical simulations, we study one-dimensional gap solitons in a binary Bose-Einstein condensate trapped in an optical-lattice potential. We consider the case of inter-species repulsion, while the intra-species interaction may be either repulsive or attractive. Several types of gap solitons are found: symmetric or asymmetric; unsplit or split, if centers of the components coincide or separate; intra-gap (with both chemical potentials falling into a single bandgap) or inter-gap, otherwise. In the case of the intra-species attraction, a smooth transition takes place between solitons in the semi-infinite gap, the ones in the first finite bandgap, and semi-gap solitons (with one component in a bandgap and the other in the semi-infinite gap).Comment: 5 pages, 9 figure

    Assessment of prescription pattern of cataract patients in the ophthalmology department at a tertiary health care institution

    Get PDF
    Background: Evaluation of the current prescription pattern of cataract patients in the Ophthalmology Department to find out utilization of drugs per prescription that reflects possibilities of drug interaction and patient compliance and to suggest measures for rational prescriptions.Methods: The study was carried out in the Ophthalmology Department at Gauhati Medical College and Hospital, Guwahati for a period of 6 months after obtaining permission from the Institutional Human Ethics Committee. This was a retrospective, observational hospital based study. The present study included patients of any age group and both the sexes (male/female) who were diagnosed as having cataract and who were prescribed different categories of drugs. A total of 156 prescriptions were collected, analysed and classified during the study period (both outdoor and indoor patients).Results: Our study found that maximum numbers of patients were encountered in the age group of 45-65 years and around 48.4% of cases for IOL implantation were having immature senile cataract. Topical eye drops are most commonly used account for 56.3% in preoperative cases. Overall 564 drugs were prescribed on discharge in 156 prescriptions; So on an average 3.6 drugs were prescribed per prescription. Overall antimicrobials (51.80%) are most commonly prescribed group followed by anti-inflammatory (25.10%), anxiolytic, steroid etc.Conclusions: Our study showed a significant awareness to avoid polypharmacy by keeping average number of drugs per prescription as low as possible to avoid increased cost of the therapy, therapeutic failure, and adverse drug reactions and hence for better patient compliance
    • …
    corecore