219 research outputs found

    Irreversibility on the Level of Single-Electron Tunneling

    Get PDF
    We present a low-temperature experimental test of the fluctuation theorem for electron transport through a double quantum dot. The rare entropy-consuming system trajectories are detected in the form of single charges flowing against the source-drain bias by using time-resolved charge detection with a quantum point contact. We find that these trajectories appear with a frequency that agrees with the theoretical predictions even under strong nonequilibrium conditions, when the finite bandwidth of the charge detection is taken into account

    A V-shape superconducting artificial atom based on two inductively coupled transmons

    Full text link
    Circuit quantum electrodynamics systems are typically built from resonators and two-level artificial atoms, but the use of multi-level artificial atoms instead can enable promising applications in quantum technology. Here we present an implementation of a Josephson junction circuit dedicated to operate as a V-shape artificial atom. Based on a concept of two internal degrees of freedom, the device consists of two transmon qubits coupled by an inductance. The Josephson nonlinearity introduces a strong diagonal coupling between the two degrees of freedom that finds applications in quantum non-demolition readout schemes, and in the realization of microwave cross-Kerr media based on superconducting circuits.Comment: 5 pages, 3 figure

    Time-resolved charge detection with cross-correlation techniques

    Full text link
    We present time-resolved charge sensing measurements on a GaAs double quantum dot with two proximal quantum point contact (QPC) detectors. The QPC currents are analyzed with cross-correlation techniques, which enables us to measure dot charging and discharging rates for significantly smaller signal-to-noise ratios than required for charge detection with a single QPC. This allows to reduce the current level in the detector and therefore the invasiveness of the detection process and may help to increase the available measurement bandwidth in noise-limited setups.Comment: 6 pages, 4 figure

    Quantum dot occupation and electron dwell time in the cotunneling regime

    Full text link
    We present comparative measurements of the charge occupation and conductance of a GaAs/AlGaAs quantum dot. The dot charge is measured with a capacitively coupled quantum point contact sensor. In the single-level Coulomb blockade regime near equilibrium, charge and conductance signals are found to be proportional to each other. We conclude that in this regime, the two signals give equivalent information about the quantum dot system. Out of equilibrium, we study the inelastic-cotunneling regime. We compare the measured differential dot charge with an estimate assuming a dwell time of transmitted carriers on the dot given by h/E, where E is the blockade energy of first-order tunneling. The measured signal is of a similar magnitude as the estimate, compatible with a picture of cotunneling as transmission through a virtual intermediate state with a short lifetime

    Optimization of sample-chip design for stub-matched radio-frequency reflectometry measurements

    Full text link
    A radio-frequency (rf) matching circuit with an in situ tunable varactor diode used for rf reflectometry measurements in semiconductor nanostructures is investigated and used to optimize the sample-specific chip design. The samples are integrated in a 2-4 GHz stub-matching circuit consisting of a waveguide stub shunted to the terminated coplanar waveguide. Several quantum point contacts fabricated on a GaAs/AlGaAs heterostructure with different chip designs are compared. We show that the change of the reflection coefficient for a fixed change in the quantum point contact conductance can be enhanced by a factor of 3 compared to conventional designs by a suitable electrode geometry

    Epitaxial rhenium microwave resonators

    No full text
    International audienceWe have fabricated rhenium microwave resonators from epitaxial films. We have used thin films of different structural quality depending on their growth conditions. The resonators were coupled to a microwave transmission line which allows the measurement of their resonance frequencies and internal quality factors. From the resonance frequency at low temperature , the effective penetration depth and the London penetration depth of the rhenium film are extracted
    corecore