418 research outputs found

    Applications of a High-Altitude Powered Platform (HAPP)

    Get PDF
    A list of potential uses for the (HAPP) and conceptual system designs for a small subset of the most promising applications were investigated. The method was to postulate a scenario for each application specifying a user, a set of system requirements and the most likely competitor among conventional aircraft and satellite systems. As part of the study of remote sensing applications, a parametric cost comparison was done between aircraft and HAPPS. For most remote sensing applications, aircraft can supply the same data as HAPPs at substantially lower cost. The critical parameters in determining the relative costs of the two systems are the sensor field of view and the required frequency of the observations being made. The HAPP is only competitive with an airplane when sensors having a very wide field of view are appropriate and when the phenomenon being observed must be viewed at least once per day. This eliminates the majority of remote sensing applications from any further consideration

    Spin/orbit moment imbalance in the near-zero moment ferromagnetic semiconductor SmN

    Full text link
    SmN is ferromagnetic below 27 K, and its net magnetic moment of 0.03 Bohr magnetons per formula unit is one of the smallest magnetisations found in any ferromagnetic material. The near-zero moment is a result of the nearly equal and opposing spin and orbital moments in the 6H5/2 ground state of the Sm3+ ion, which leads finally to a nearly complete cancellation for an ion in the SmN ferromagnetic state. Here we explore the spin alignment in this compound with X-ray magnetic circular dichroism at the Sm L2,3 edges. The spectral shapes are in qualitative agreement with computed spectra based on an LSDA+U (local spin density approximation with Hubbard-U corrections) band structure, though there remain differences in detail which we associate with the anomalous branching ratio in rare-earth L edges. The sign of the spectra determine that in a magnetic field the Sm 4f spin moment aligns antiparallel to the field; the very small residual moment in ferromagnetic SmN aligns with the 4f orbital moment and antiparallel to the spin moment. Further measurements on very thin (1.5 nm) SmN layers embedded in GdN show the opposite alignment due to a strong Gd-Sm exchange, suggesting that the SmN moment might be further reduced by about 0.5 % Gd substitution

    Quantitative study of molecular N_2 trapped in disordered GaN:O films

    Full text link
    The structure of disordered GaN:O films grown by ion-assisted deposition is investigated using x-ray absorption near-edge spectroscopy and Raman spectroscopy. It is found that between 4 and 21 % of the nitrogen in the films is in the form of molecular N_2 that interacts only weakly with the surrounding matrix. The anion to cation ratio in the GaN:O host remains close to unity, and there is a close correlation between the N_2 fraction, the level of oxygen impurities, and the absence of short-range order in the GaN:O matrix.Comment: 5 pages, 3 figure

    Europium nitride: A novel diluted magnetic semiconductor

    Full text link
    Europium nitride is semiconducting and contains non-magnetic \3+, but sub-stoichiometric EuN has Eu in a mix of 2+ and 3+ charge states. We show that at \2+ ~concentrations near 15-20% EuN is ferromagnetic with a Curie temperature as high as 120 K. The \3+ ~polarization follows that of the \2+, confirming that the ferromagnetism is intrinsic to the EuN which is thus a novel diluted magnetic semiconductor. Transport measurements shed light on the likely exchange mechanisms.Comment: 5 page
    • …
    corecore