2,016 research outputs found

    THTR 239A.01: Creative Drama / Dance - K-8

    Get PDF

    Perspectieven op milieurisico's

    Get PDF
    Environmen

    Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze estuary

    Get PDF
    To quantify wave attenuation by (introduced) Spartina alterniflora vegetation at an exposed macrotidal coast in the Yangtze Estuary, China, wave parameters and water depth were measured during 13 consecutive tides at nine locations ranging from 10 m seaward to 50 m landward of the low marsh edge. During this period, the incident wave height ranged from <0.1 to 1.5 m, the maximum of which is much higher than observed in other marsh areas around the world. Our measurements and calculations showed that the wave attenuation rate per unit distance was 1 to 2 magnitudes higher over the marsh than over an adjacent mudflat. Although the elevation gradient of the marsh margin was significantly higher than that of the adjacent mudflat, more than 80% of wave attenuation was ascribed to the presence of vegetation, suggesting that shoaling effects were of minor importance. On average, waves reaching the marsh were eliminated over a distance of similar to 80 m, although a marsh distance of >= 100 m was needed before the maximum height waves were fully attenuated during high tides. These attenuation distances were longer than those previously found in American salt marshes, mainly due to the macrotidal and exposed conditions at the present site. The ratio of water depth to plant height showed an inverse correlation with wave attenuation rate, indicating that plant height is a crucial factor determining the efficiency of wave attenuation. Consequently, the tall shoots of the introduced S. alterniflora makes this species much more efficient at attenuating waves than the shorter, native pioneer species in the Yangtze Estuary, and should therefore be considered as a factor in coastal management during the present era of sea-level rise and global change. We also found that wave attenuation across the salt marsh can be predicted using published models when a suitable coefficient is incorporated to account for drag, which varies in place and time due to differences in plant characteristics and abiotic conditions (i.e., bed gradient, initial water depth, and wave action).

    New developments in adult congenital heart disease

    Get PDF
    Contains fulltext : 225482.pdf (Publisher’s version ) (Open Access)Congenital heart disease (CHD) affects 0.8% of live births and over the past decades technical improvements and large-scale repair has led to increased survival into adulthood of over 95% of the new-born. A new group of patients, those who survived their congenital heart defect, has emerged but late complications including heart failure, pulmonary hypertension (PH), arrhythmias, aneurysms and endocarditis appeared numerous, with a huge impact on mortality and morbidity. However, innovations over the past years have changed the landscape of adult CHD dramatically. In the diagnostic process important improvements have been made in the use of MRI, biomarkers, e‑health concepts and 3D visualisation of anatomy. Care is now concentrated in specialised centres, with a continuous emphasis on education and the introduction of weekly multidisciplinary consultations on diagnosis and intervention. Surgery and percutaneous intervention have been refined and new concepts applied, further reducing the burden of the congenital malformations. Research has matured from case series to global networks. Currently, adults with CHD are still facing high risks of early mortality and morbidity. By global collaboration and continuous education and development and innovation of our diagnostic and therapeutic arsenal, we will improve the perspectives of these young patients
    • …
    corecore