9,082 research outputs found

    Detection of Radio Emission from the Hyperactive L Dwarf 2MASS J13153094-2649513AB

    Full text link
    We report the detection of radio emission from the unusually active L5e + T7 binary 2MASS J13153094-2649513AB made with the Australian Telescope Compact Array. Observations at 5.5 GHz reveal an unresolved source with a continuum flux of 370+/-50 microJy, corresponding to a radio luminosity of L_rad = nuL_nu = (9+/-3)x10^23 erg/s and log10(L_rad/L_bol) = -5.44+/-0.22. No detection is made at 9.0 GHz to a 5 sigma limit of 290 microJy, consistent with a power law spectrum S_nu ~ nu^-a with a > 0.5. The emission is quiescent, with no evidence of variability or bursts over 3 hr of observation, and no measurable polarization (V/I < 34%). 2MASS J1315-2649AB is one of the most radio-luminous ultracool dwarfs detected in quiescent emission to date, comparable in strength to other cool sources detected in outburst. Its detection indicates no decline in radio flux through the mid-L dwarfs. It is unique among L dwarfs in having strong and persistent Halpha and radio emission, indicating the coexistence of a cool, neutral photosphere (low electron density) and a highly active chromosphere (high electron density and active heating). These traits, coupled with the system's mature age and substellar secondary, makes 2MASS J1315-2649AB an important test for proposed radio emission mechanisms in ultracool dwarfs.Comment: 5 pages, 4 figures, accepted for publication in ApJ Letter

    Phenology satellite experiment

    Get PDF
    The detection of a phenological event (the brown wave-vegetation senescence) for specific forest and crop types using ERTS-1 imagery is described. Data handling techniques included computer analysis and photo interpretation procedures. Computer analysis of ERTS-1 multispectral scanner digital tapes in all bands was used to give the relative changes of spectral reflectance with time of forests and specified crops. These data were obtained for a number of the study's twenty-four sites located within four north-south corridors across the United States. Analysis of ground observation photography and ERTS-1 imagery for sites in the Appalachian Corridor and Mississippi Valley Corridor indicates that the recession of vegetation development can be detected very well. Tentative conclusions are that specific phenological events such as crop maturity or leaf fall can be mapped for specific sites and possibly for entire regions

    Evidence for bimodal orbital separations of white dwarf-red dwarf binary stars

    Get PDF
    We present the results of a radial velocity survey of 20 white dwarf plus M dwarf binaries selected as a follow up to a \textit{Hubble Space Telescope} study that aimed to spatially resolve suspected binaries. Our candidates are taken from the list of targets that were spatially unresolved with \textit{Hubble}. We have determined the orbital periods for 16 of these compact binary candidates. The period distribution ranges from 0.14 to 9.16\,d and peaks near 0.6\,d. The original sample therefore contains two sets of binaries, wide orbits (≈100−1000\approx100-1000\,au) and close orbits (≲1−10\lesssim1-10\,au), with no systems found in the ≈10−100\approx10-100\,au range. This observational evidence confirms the bimodal distribution predicted by population models and is also similar to results obtained in previous studies. We find no binary periods in the months to years range, supporting the post common envelope evolution scenario. One of our targets, WD\,1504+546, was discovered to be an eclipsing binary with a period of 0.93\,d

    Overcoming the boundary layer turbulence at Dome C: ground-layer adaptive optics versus tower

    Get PDF
    The unique atmospheric conditions present at sites such as Dome C on the Antarctic plateau are very favorable for high spatial resolution astronomy. At Dome C, the majority of the optical turbulence is confined to a 30 to 40 m thick stable boundary layer that results from the strong temperature inversion created by the heat exchange between the air and the ice-covered ground. To fully realize the potential of the exceptionally calm free atmosphere, this boundary layer must be overcome. In this article we compare the performance of two methods proposed to beat the boundary layer: mounting a telescope on a tower that physically puts it above the turbulent layer, and installing a telescope at ground level with a ground-layer adaptive optics system. A case is also made to combine these two methods to further improve the image quality

    Phenology satellite experiment

    Get PDF
    There are no author-identified significant results in this report

    Space-time evolution of electron cascades in diamond

    Full text link
    Here we describe model calculations to follow the spatio-temporal evolution of secondary electron cascades in diamond. The band structure of the insulator has been explicitly incorporated into the calculations as it affects ionizations from the valence band. A Monte-Carlo model was constructed to describe the path of electrons following the impact of a single electron of energy E 250 eV. The results show the evolution of the secondary electron cascades in terms of the number of electrons liberated, the spatial distribution of these electrons, and the energy distribution among the electrons as a function of time. The predicted ionization rates (5-13 electrons in 100 fs) lie within the limits given by experiments and phenomenological models. Calculation of the local electron density and the corresponding Debye length shows that the latter is systematically larger than the radius of the electron cloud. This means that the electron gas generated does not represent a plasma in a single impact cascade triggered by an electron of E 250 eV energy. This is important as it justifies the independent-electron approximation used in the model. At 1 fs, the (average) spatial distribution of secondary electrons is anisotropic with the electron cloud elongated in the direction of the primary impact. The maximal radius of the cascade is about 50 A at this time. As the system cools, energy is distributed more equally, and the spatial distribution of the electron cloud becomes isotropic. At 90 fs maximal radius is about 150 A. The Monte-Carlo model described here could be adopted for the investigation of radiation damage in other insulators and has implications for planned experiments with intense femtosecond X-ray sources.Comment: 26 pages, latex, 13 figure

    The first high-amplitude delta Scuti star in an eclipsing binary system

    Full text link
    We report the discovery of the first high-amplitude delta Scuti star in an eclipsing binary, which we have designated UNSW-V-500. The system is an Algol-type semi-detached eclipsing binary of maximum brightness V = 12.52 mag. A best-fitting solution to the binary light curve and two radial velocity curves is derived using the Wilson-Devinney code. We identify a late A spectral type primary component of mass 1.49+/-0.02 M_sun and a late K spectral type secondary of mass 0.33+/-0.02 M_sun, with an inclination of 86.5+/-1.0 degrees, and a period of 5.3504751+/-0.0000006 d. A Fourier analysis of the residuals from this solution is performed using PERIOD04 to investigate the delta Scuti pulsations. We detect a single pulsation frequency of f_1 = 13.621+/-0.015 c/d, and it appears this is the first overtone radial mode frequency. This system provides the first opportunity to measure the dynamical mass for a star of this variable type; previously, masses have been derived from stellar evolution and pulsation models.Comment: 7 pages, 6 figures, 2 tables, for submission to MNRAS, v2: paper size change, small typographical changes to abstrac

    A Wide-Field CCD Survey for Centaurs and Kuiper Belt Objects

    Get PDF
    A modified Baker-Nunn camera was used to conduct a wide-field survey of 1428 square degrees of sky near the ecliptic in search of bright Kuiper Belt objects and Centaurs. This area is an order of magnitude larger than any previously published CCD survey for Centaurs and Kuiper Belt Objects. No new objects brighter than red magnitude m=18.8 and moving at a rate 1"/hr to 20"/hr were discovered, although one previously discovered Centaur 1997 CU26 Chariklo was serendipitously detected. The parameters of the survey were characterized using both visual and automated techniques. From this survey the empirical projected surface density of Centaurs was found to be SigmaCentaur(m<18.8)=7.8(+16.0 -6.6)x10^-4 per square degree and we found a projected surface density 3sigma upper confidence limit for Kuiper Belt objects of SigmaKBO(m< 18.8)<4.1x10^-3 per square degree. We discuss the current state of the cumulative luminosity functions of both Centaurs and Kuiper Belt objects. Through a Monte Carlo simulation we show that the size distribution of Centaurs is consistent with a q=4 differential power law, similar to the size distribution of the parent Kuiper Belt Objects. The Centaur population is of order 10^7 (radius > 1 km) assuming a geometric albedo of 0.04. About 100 Centaurs are larger than 50 km in radius, of which only 4 are presently known. The current total mass of the Centaurs is 10^-4 Earth Masses. No dust clouds were detected resulting from Kuiper Belt object collisions, placing a 3sigma upper limit <600 collisionally produced clouds of m<18.8 per year.Comment: 13 pages, 5 figures, Accepted for Publication in A

    Research, Identity, and the Future of UNLV

    Full text link
    Messages from the Administration, Innovation Magazine
    • …
    corecore