18,325 research outputs found

    High voltage solid-state relay

    Get PDF
    Hybrid microelectronics relay has characteristics significantly superior to conventional solid state relays. Relay provides 2500 Vdc input to output isolation and operates from high threshold logic signal to switch load of 400 Vdc at 2 mA. Technology should be of interest to manufacturers of discrete components

    Disordered Electrons in a Strong Magnetic Field: Transfer Matrix Approaches to the Statistics of the Local Density of States

    Full text link
    We present two novel approaches to establish the local density of states as an order parameter field for the Anderson transition problem. We first demonstrate for 2D quantum Hall systems the validity of conformal scaling relations which are characteristic of order parameter fields. Second we show the equivalence between the critical statistics of eigenvectors of the Hamiltonian and of the transfer matrix, respectively. Based on this equivalence we obtain the order parameter exponent α0≈3.4\alpha_0\approx 3.4 for 3D quantum Hall systems.Comment: 4 pages, 3 Postscript figures, corrected scale in Fig.

    Non-Abelian Giant Gravitons

    Get PDF
    We argue that the giant graviton configurations known from the literature have a complementary, microscopical description in terms of multiple gravitational waves undergoing a dielectric (or magnetic moment) effect. We present a non-Abelian effective action for these gravitational waves with dielectric couplings and show that stable dielectric solutions exist. These solutions agree in the large NN limit with the giant graviton configurations in the literature.Comment: 8 pages. Contribution to the proceedings of the RTN workshop in Leuven, Belgium, September 200

    Transport on Directed Percolation Clusters

    Full text link
    We study random lattice networks consisting of resistor like and diode like bonds. For investigating the transport properties of these random resistor diode networks we introduce a field theoretic Hamiltonian amenable to renormalization group analysis. We focus on the average two-port resistance at the transition from the nonpercolating to the directed percolating phase and calculate the corresponding resistance exponent Ï•\phi to two-loop order. Moreover, we determine the backbone dimension DBD_B of directed percolation clusters to two-loop order. We obtain a scaling relation for DBD_B that is in agreement with well known scaling arguments.Comment: 4 page

    Short-time Critical Dynamics of the 3-Dimensional Ising Model

    Full text link
    Comprehensive Monte Carlo simulations of the short-time dynamic behaviour are reported for the three-dimensional Ising model at criticality. Besides the exponent θ\theta of the critical initial increase and the dynamic exponent zz, the static critical exponents ν\nu and β\beta as well as the critical temperature are determined from the power-law scaling behaviour of observables at the beginning of the time evolution. States of very high temperature as well as of zero temperature are used as initial states for the simulations.Comment: 8 pages with 7 figure

    pp Wave Big Bangs: Matrix Strings and Shrinking Fuzzy Spheres

    Get PDF
    We find pp wave solutions in string theory with null-like linear dilatons. These provide toy models of big bang cosmologies. We formulate Matrix String Theory in these backgrounds. Near the big bang ``singularity'', the string theory becomes strongly coupled but the Yang-Mills description of the matrix string is weakly coupled. The presence of a second length scale allows us to focus on a specific class of non-abelian configurations, viz. fuzzy cylinders, for a suitable regime of parameters. We show that, for a class of pp waves, fuzzy cylinders which start out big at early times dynamically shrink into usual strings at sufficiently late times.Comment: 29 pages, ReVTeX and AMSLaTeX. 4 Figures. v2: Typo corrected and reference adde

    Diluted Networks of Nonlinear Resistors and Fractal Dimensions of Percolation Clusters

    Full text link
    We study random networks of nonlinear resistors, which obey a generalized Ohm's law, V∼IrV\sim I^r. Our renormalized field theory, which thrives on an interpretation of the involved Feynman Diagrams as being resistor networks themselves, is presented in detail. By considering distinct values of the nonlinearity r, we calculate several fractal dimensions characterizing percolation clusters. For the dimension associated with the red bonds we show that dred=1/νd_{\scriptsize red} = 1/\nu at least to order {\sl O} (\epsilon^4), with ν\nu being the correlation length exponent, and ϵ=6−d\epsilon = 6-d, where d denotes the spatial dimension. This result agrees with a rigorous one by Coniglio. Our result for the chemical distance, d_{\scriptsize min} = 2 - \epsilon /6 - [ 937/588 + 45/49 (\ln 2 -9/10 \ln 3)] (\epsilon /6)^2 + {\sl O} (\epsilon^3) verifies a previous calculation by one of us. For the backbone dimension we find D_B = 2 + \epsilon /21 - 172 \epsilon^2 /9261 + 2 (- 74639 + 22680 \zeta (3))\epsilon^3 /4084101 + {\sl O} (\epsilon^4), where ζ(3)=1.202057...\zeta (3) = 1.202057..., in agreement to second order in ϵ\epsilon with a two-loop calculation by Harris and Lubensky.Comment: 29 pages, 7 figure

    Generalized Dynamic Scaling for Critical Relaxations

    Full text link
    The dynamic relaxation process for the two dimensional Potts model at criticality starting from an initial state with very high temperature and arbitrary magnetization is investigated with Monte Carlo methods. The results show that there exists universal scaling behaviour even in the short-time regime of the dynamic evolution. In order to describe the dependence of the scaling behaviour on the initial magnetization, a critical characteristic function is introduced.Comment: Latex, 8 pages, 3 figures, to appear in Phys. Rev. Let

    Phase transitions in periodically driven macroscopic systems

    Full text link
    We study the large-time behavior of a class of periodically driven macroscopic systems. We find, for a certain range of the parameters of either the system or the driving fields, the time-averaged asymptotic behavior effectively is that of certain other equilibrium systems. We then illustrate with a few examples how the conventional knowledge of the equilibrium systems can be made use in choosing the driving fields to engineer new phases and to induce new phase transitions.Comment: LaTex, 8 page
    • …
    corecore