181 research outputs found
Stability boundaries of roll and square convection in binary fluid mixtures with positive separation ratio
Rayleigh-B\'{e}nard convection in horizontal layers of binary fluid mixtures
heated from below with realistic horizontal boundary conditions is studied
theoretically using multi-mode Galerkin expansions. For positive separation
ratios the main difference between the mixtures and pure fluids lies in the
existence of stable three dimensional patterns near onset in a wide range of
the parameter space. We evaluated the stationary solutions of roll, crossroll,
and square convection and we determined the location of the stability
boundaries for many parameter combinations thereby obtaining the Busse balloon
for roll and square patterns.Comment: 19 pages + 15 figures, accepted by Journal of Fluid Mechanic
Roll convection of binary fluid mixtures in porous media
We investigate theoretically the nonlinear state of ideal straight rolls in
the Rayleigh-B\'enard system of a fluid layer heated from below with a porous
medium using a Galerkin method. Applying the Oberbeck-Boussinesq approximation,
binary mixtures with positive separation ratio are studied and compared to
one-component fluids. Our results for the structural properties of roll
convection resemble qualitatively the situation in the Rayleigh--B\'enard
system without porous medium except for the fact that the streamlines of binary
mixtures are deformed in the so-called Soret regime. The deformation of the
streamlines is explained by means of the Darcy equation which is used to
describe the transport of momentum. In addition to the properties of the rolls,
their stability against arbitrary infinitesimal perturbations is investigated.
We compute stability balloons for the pure fluid case as well as for a wide
parameter range of Lewis numbers and separation ratios which are typical for
binary gas and fluid mixtures. The stability regions of rolls are found to be
restricted by a crossroll, a zigzag and a new type of oscillatory instability
mechanism, which can be related to the crossroll mechanism
Faraday instability in a two-component Bose Einstein condensate
Motivated by recent experiments on Faraday waves in Bose Einstein condensates
(BEC) we investigate the dynamics of two component cigar shaped BEC subject to
periodic modulation of the strength of the transverse confinement. It is shown
that two coupled Mathieu equations govern the dynamics of the system. We found
that the two component BEC in a phase mixed state is relatively more unstable
towards pattern formation than the phase segregated state.Comment: 6 pages, 4 figure
Magnetization and susceptibility of ferrofluids
A second-order Taylor series expansion of the free energy functional provides
analytical expressions for the magnetic field dependence of the free energy and
of the magnetization of ferrofluids, here modelled by dipolar Yukawa
interaction potentials. The corresponding hard core dipolar Yukawa reference
fluid is studied within the framework of the mean spherical approximation. Our
findings for the magnetic and phase equilibrium properties are in quantitative
agreement with previously published and new Monte Carlo simulation data.Comment: 8 pages including 4 figure
Magnetic properties of colloidal suspensions of interacting magnetic particles
We review equilibrium thermodynamic properties of systems of magnetic
particles like ferrofluids in which dipolar interactions play an important
role. The review is focussed on two subjects: ({\em i}) the magnetization with
the initial magnetic susceptibility as a special case and ({\em ii}) the phase
transition behavior. Here the condensation ("gas/liquid") transition in the
subsystem of the suspended particles is treated as well as the
isotropic/ferromagnetic transition to a state with spontaneously generated
long--range magnetic order.Comment: Review. 62 pages, 4 figure
A molecular dynamics study on the equilibrium magnetization properties and structure of ferrofluids
We investigate in detail the initial susceptibility, magnetization curves,
and microstructure of ferrofluids in various concentration and particle dipole
moment ranges by means of molecular dynamics simulations. We use the Ewald
summation for the long-range dipolar interactions, take explicitly into account
the translational and rotational degrees of freedom, coupled to a Langevin
thermostat. When the dipolar interaction energy is comparable with the thermal
energy, the simulation results on the magnetization properties agree with the
theoretical predictions very well. For stronger dipolar couplings, however, we
find systematic deviations from the theoretical curves. We analyze in detail
the observed microstructure of the fluids under different conditions. The
formation of clusters is found to enhance the magnetization at weak fields and
thus leads to a larger initial susceptibility. The influence of the particle
aggregation is isolated by studying ferro-solids, which consist of magnetic
dipoles frozen in at random locations but which are free to rotate. Due to the
artificial suppression of clusters in ferro-solids the observed susceptibility
is considerably lowered when compared to ferrofluids.Comment: 33 pages including 12 figures, requires RevTex
Magnetization of ferrofluids with dipolar interactions - a Born--Mayer expansion
For ferrofluids that are described by a system of hard spheres interacting
via dipolar forces we evaluate the magnetization as a function of the internal
magnetic field with a Born--Mayer technique and an expansion in the dipolar
coupling strength. Two different approximations are presented for the
magnetization considering different contributions to a series expansion in
terms of the volume fraction of the particles and the dipolar coupling
strength.Comment: 19 pages, 11 figures submitted to PR
- …
