18,559 research outputs found
Nonlocal feedback in ferromagnetic resonance
Ferromagnetic resonance in thin films is analyzed under the influence of
spatiotemporal feedback effects. The equation of motion for the magnetization
dynamics is nonlocal in both space and time and includes isotropic, anisotropic
and dipolar energy contributions as well as the conserved Gilbert- and the
non-conserved Bloch-damping. We derive an analytical expression for the
peak-to-peak linewidth. It consists of four separate parts originated by
Gilbert damping, Bloch-damping, a mixed Gilbert-Bloch component and a
contribution arising from retardation. In an intermediate frequency regime the
results are comparable with the commonly used Landau-Lifshitz-Gilbert theory
combined with two-magnon processes. Retardation effects together with Gilbert
damping lead to a linewidth the frequency dependence of which becomes strongly
nonlinear. The relevance and the applicability of our approach to ferromagnetic
resonance experiments is discussed.Comment: 22 pages, 9 figure
Magnetic relaxation in metallic films: Single and multilayer structures
The intrinsic magnetic relaxations in metallic films will be discussed. It will be shown that the intrinsic damping mechanism in metals is
caused by incoherent scattering of itinerant electron-hole pair
excitations by phonons and magnons. Berger [L. Berger, Phys. Rev. B
54, 9353 (1996)] showed that the interaction between spin waves and
itinerant electrons in multilayers can lead to interface Gilbert
damping. Ferromagnetic resonance (FMR) studies were carried out using
magnetic single and double layer films. The FMR linewidth of the Fe
films in the double layer structures was found to always be larger than
the FMR linewidth measured for the single Fe films having the same
thickness. The increase in the FMR linewidth scaled inversely with the
film thickness, and was found to be linearly dependent on the microwave
frequency. These results are in agreement with Berger's predictions.
(C) 2002 American Institute of Physics
Identification of the dominant precession damping mechanism in Fe, Co, and Ni by first-principles calculations
The Landau-Lifshitz equation reliably describes magnetization dynamics using
a phenomenological treatment of damping. This paper presents first-principles
calculations of the damping parameters for Fe, Co, and Ni that quantitatively
agree with existing ferromagnetic resonance measurements. This agreement
establishes the dominant damping mechanism for these systems and takes a
significant step toward predicting and tailoring the damping constants of new
materials.Comment: 4 pages, 1 figur
Gilbert Damping in Magnetic Multilayers
We study the enhancement of the ferromagnetic relaxation rate in thin films
due to the adjacent normal metal layers. Using linear response theory, we
derive the dissipative torque produced by the s-d exchange interaction at the
ferromagnet-normal metal interface. For a slow precession, the enhancement of
Gilbert damping constant is proportional to the square of the s-d exchange
constant times the zero-frequency limit of the frequency derivative of the
local dynamic spin susceptibility of the normal metal at the interface.
Electron-electron interactions increase the relaxation rate by the Stoner
factor squared. We attribute the large anisotropic enhancements of the
relaxation rate observed recently in multilayers containing palladium to this
mechanism. For free electrons, the present theory compares favorably with
recent spin-pumping result of Tserkovnyak et al. [Phys. Rev. Lett.
\textbf{88},117601 (2002)].Comment: 1 figure, 5page
Low relaxation rate in a low-Z alloy of iron
The longest relaxation time and sharpest frequency content in ferromagnetic
precession is determined by the intrinsic (Gilbert) relaxation rate \emph{}.
For many years, pure iron (Fe) has had the lowest known value of for all pure ferromagnetic metals or binary alloys. We show that an
epitaxial iron alloy with vanadium (V) possesses values of which are
significantly reduced, to 355 Mhz at 27% V. The result can be understood
as the role of spin-orbit coupling in generating relaxation, reduced through
the atomic number .Comment: 14 pages, 4 figure
- …
