4,627 research outputs found

    Null Half-Supersymmetric Solutions in Five-Dimensional Supergravity

    Full text link
    We classify half-supersymmetric solutions of gauged N=2, D=5 supergravity coupled to an arbitrary number of abelian vector multiplets for which all of the Killing spinors generate null Killing vectors. We show that there are four classes of solutions, and in each class we find the metric, scalars and gauge field strengths. When the scalar manifold is symmetric, the solutions correspond to a class of local near horizon geometries recently found by Kunduri and Lucietti.Comment: 46 pages, typos corrected and reference added. Section 7.1 has been added: it is shown that the solutions found here correspond to a class of solutions found in arXiv:0708.3695. Uses JHEP3.cl

    Information embedding meets distributed control

    Full text link
    We consider the problem of information embedding where the encoder modifies a white Gaussian host signal in a power-constrained manner to encode the message, and the decoder recovers both the embedded message and the modified host signal. This extends the recent work of Sumszyk and Steinberg to the continuous-alphabet Gaussian setting. We show that a dirty-paper-coding based strategy achieves the optimal rate for perfect recovery of the modified host and the message. We also provide bounds for the extension wherein the modified host signal is recovered only to within a specified distortion. When specialized to the zero-rate case, our results provide the tightest known lower bounds on the asymptotic costs for the vector version of a famous open problem in distributed control -- the Witsenhausen counterexample. Using this bound, we characterize the asymptotically optimal costs for the vector Witsenhausen problem numerically to within a factor of 1.3 for all problem parameters, improving on the earlier best known bound of 2.Comment: 19 pages, 7 figures. Presented at ITW'10. Submitted to IEEE Transactions on Information Theor

    Policy Initiatives by the Government of India to Accelerate the Growth of Installed Nuclear Power Capacity in the Coming Years

    Get PDF
    AbstractWhen examined from the point of view of the size of its population and economy, India is not well endowed with energy resources. Studies done by the Department of Atomic Energy indicate that even after exploiting full potential of every available source of energy including nuclear energy, India needs to continue to import energy resources. In this backdrop, an initiative was launched by Government of India to open up international civil nuclear commerce so as to enable India to access natural uranium from international market and to set up nuclear reactors in technical cooperation with other countries. The paper provides details of what has been done so far, ongoing steps and likely growth scenario for nuclear installed capacity in the country

    Measurement of an integral of a classical field with a single quantum particle

    Full text link
    A method for measuring an integral of a classical field via local interaction of a single quantum particle in a superposition of 2^N states is presented. The method is as efficient as a quantum method with N qubits passing through the field one at a time and it is exponentially better than any known classical method that uses N bits passing through the field one at a time. A related method for searching a string with a quantum particle is proposed.Comment: 3 page

    Query complexity for searching multiple marked states from an unsorted database

    Full text link
    An important and usual problem is to search all states we want from a database with a large number of states. In such, recall is vital. Grover's original quantum search algorithm has been generalized to the case of multiple solutions, but no one has calculated the query complexity in this case. We will use a generalized algorithm with higher precision to solve such a search problem that we should find all marked states and show that the practical query complexity increases with the number of marked states. In the end we will introduce an algorithm for the problem on a ``duality computer'' and show its advantage over other algorithms.Comment: 4 pages,4 figures,twocolum

    Noise in Grover's Quantum Search Algorithm

    Full text link
    Grover's quantum algorithm improves any classical search algorithm. We show how random Gaussian noise at each step of the algorithm can be modelled easily because of the exact recursion formulas available for computing the quantum amplitude in Grover's algorithm. We study the algorithm's intrinsic robustness when no quantum correction codes are used, and evaluate how much noise the algorithm can bear with, in terms of the size of the phone book and a desired probability of finding the correct result. The algorithm loses efficiency when noise is added, but does not slow down. We also study the maximal noise under which the iterated quantum algorithm is just as slow as the classical algorithm. In all cases, the width of the allowed noise scales with the size of the phone book as N^-2/3.Comment: 17 pages, 2 eps figures. Revised version. To be published in PRA, December 199
    • …
    corecore