4,727 research outputs found

    ACENES, HETEROACENES AND ANALOGOUS MOLECULES FOR ORGANIC PHOTOVOLTAIC AND FIELD EFFECT TRANSISTOR APPLICATIONS

    Get PDF
    Polycyclic aromatic hydrocarbons composed of benzenoid rings fused in a linear fashion comprise the class of compounds known as acenes. The structures containing three to six ring fusions are brightly colored and possess band gaps and charge transport efficiencies sufficient for semiconductor applications. These molecules have been investigated throughout the past several decades to assess their optoelectronic properties. The absorption, emission and charge transport properties of this series of molecules has been studied extensively to elucidate structure-property relationships. A wide variety of analogous molecules, incorporating heterocycles in place of benzenoid rings, demonstrate similar properties to the parent compounds and have likewise been investigated. Functionalization of acene compounds by placement of groups around the molecule affects the way in which molecules interact in the solid state, in addition to the energetics of the molecule. The use of electron donating or electron withdrawing groups affects the frontier molecular orbitals and thus affects the optical and electronic gaps of the molecules. The use of bulky side groups such as alkylsilylethynyl groups allows for crystal engineering of molecular aggregates, and changing the volume and dimensions of the alkylsilyl groups affects the intermolecular interactions and thus changes the packing motif. In chapter 2, a series of tetracene and pentacene molecules with strongly electron withdrawing groups is described. The investigation focuses on the change in energetics of the frontier molecular orbitals between the base acene and the nitrile and dicyanovinyl derivatives as well as the differences between the pentacene and tetracene molecules. The differences in close packing motifs through use of bulky alkylsilylethynyl groups is also discussed in relation to electron acceptor material design and bulk heterojunction organic photovoltaic characteristics. Chapter 3 focuses on molecular acceptor and donor molecules for bulk heterojunction organic photovoltaics based on anthrathiophene and benzo[1,2-b:4,5-b’]dithiophene central units like literature molecules containing fluorene and dithieno[2,3-b:2’,3’-d]silole cores. The synthetic strategies of developing reduced symmetry benzo[1,2-b:4,5-b’]dithiophene to study the effect of substitution around the central unit is also described. The optical and electronic properties of the donors and acceptors are described along with the performance and characteristics of devices employing these molecules. The final two data chapters focus on new nitrogen containing polycyclic hydrocarbons containing indolizine and (2.2.2) cyclazine units. The optical, electronic and other physical properties of these molecules are explored, in addition to the synthetic strategies for incorporating the indolizine and cyclazine units. By use of alkylsilylethynyl groups, crystal engineering was investigated for the benzo[2,3-b:5,6-b’]diindolizine chromophore described in chapter 4 to target the 2-D “brick-work” packing motif for application in field effect transistor devices. Optical and electronic properties of the cyclazine end-capped acene molecules described in chapter 5 were investigated and described in relation to the base acene molecules. In both cases, density functional theory calculations were conducted to better understand unexpected optical properties of these molecules, which are like the linear acene series despite the non-linear attachment

    Feshbach Resonance Cooling of Trapped Atom Pairs

    Full text link
    Spectroscopic studies of few-body systems at ultracold temperatures provide valuable information that often cannot be extracted in a hot environment. Considering a pair of atoms, we propose a cooling mechanism that makes use of a scattering Feshbach resonance. Application of a series of time-dependent magnetic field ramps results in the situation in which either zero, one, or two atoms remain trapped. If two atoms remain in the trap after the field ramps are completed, then they have been cooled. Application of the proposed cooling mechanism to optical traps or lattices is considered.Comment: 5 pages, 3 figures; v.2: major conceptual change

    Quasi-one-dimensional Bose gases with large scattering length

    Full text link
    Bose gases confined in highly-elongated harmonic traps are investigated over a wide range of interaction strengths using quantum Monte Carlo techniques. We find that the properties of a Bose gas under tight transverse confinement are well reproduced by a 1d model Hamiltonian with contact interactions. We point out the existence of a unitary regime, where the properties of the quasi-1d Bose gas become independent of the actual value of the 3d scattering length. In this unitary regime, the energy of the system is well described by a hard rod equation of state. We investigate the stability of quasi-1d Bose gases with positive and negative 3d scattering length.Comment: 5 pages, 3 figure

    Synthesis and Crystal Structure of Tetrachloro (1,10-phenanthroline) platinum (IV)

    Get PDF
    We report the crystal structure determination of tetrachloro( l,10-phenan­throline)platinum(IV). X-ray data indicate there is little steric repulsion between the cx.-hydrogens on the phenanthroline ligand and the chloride ligands in the equatorial plane

    Quantum Monte Carlo study of quasi-one-dimensional Bose gases

    Full text link
    We study the behavior of quasi-one-dimensional (quasi-1d) Bose gases by Monte Carlo techniques, i.e., by the variational Monte Carlo, the diffusion Monte Carlo, and the fixed-node diffusion Monte Carlo technique. Our calculations confirm and extend our results of an earlier study [Astrakharchik et al., cond-mat/0308585]. We find that a quasi-1d Bose gas i) is well described by a 1d model Hamiltonian with contact interactions and renormalized coupling constant; ii) reaches the Tonks-Girardeau regime for a critical value of the 3d scattering length a_3d; iii) enters a unitary regime for |a_3d| -> infinity, where the properties of the gas are independent of a_3d and are similar to those of a 1d gas of hard-rods; and iv) becomes unstable against cluster formation for a critical value of the 1d gas parameter. The accuracy and implications of our results are discussed in detail.Comment: 15 pages, 9 figure

    Restoring soil functionality in degraded areas of organic vineyards - Preliminary results of the ReSolVe project in the French vineyards

    Get PDF
    Degraded soil areas in vineyards are associated with problems in vine health, grape production and quality. Different causes for soil degradation are possible such as poor organic matter content, lower plant nutrient availability, pH, water deficiency, soil compaction / lower oxygenation… The aim of this preliminary study is to assess soil functionality (OM decomposition), biodiversity through mesofauna diversity and consequences for vine growth and quality

    Macroeconometric Modelling with a Global Perspective

    Get PDF
    This paper provides a synthesis and further development of a global modelling approach introduced in Pesaran, Schuermann and Weiner (2004), where country specific models in the form of VARX* structures are estimated relating a vector of domestic variables to their foreign counterparts and then consistently combined to form a Global VAR (GVAR). It is shown that VARX* models can be derived as the solution to a dynamic stochastic general equilibrium (DSGE) model where over-identifying long-run theoretical relations can be tested and imposed if acceptable. Similarly, short-run over-identifying theoretical restrictions can be tested and imposed if accepted. The assumption of the weak exogeneity of the foreign variables for the long-run parameters can be tested, where foreign variables can be interpreted as proxies for global factors. Rather than using deviations from ad hoc statistical trends, the equilibrium values of the variables reflecting the long-run theory embodied in the model can be calculated

    Replicating financial market dynamics with a simple self-organized critical lattice model

    Full text link
    We explore a simple lattice field model intended to describe statistical properties of high frequency financial markets. The model is relevant in the cross-disciplinary area of econophysics. Its signature feature is the emergence of a self-organized critical state. This implies scale invariance of the model, without tuning parameters. Prominent results of our simulation are time series of gains, prices, volatility, and gains frequency distributions, which all compare favorably to features of historical market data. Applying a standard GARCH(1,1) fit to the lattice model gives results that are almost indistinguishable from historical NASDAQ data.Comment: 20 pages, 33 figure
    • …
    corecore