613 research outputs found

    Selection on selected records

    Get PDF

    Phylogenetic relationships among basal-most arthrodontous mosses with special emphasis on the evolutionary significance of the Funariineae

    Get PDF
    The classification of the Bryopsida (mosses) has been based primarily on the variation of sporophytic characters i.e., architectural features of the peristome teeth that line the capsule mouth. Five arthrodontous peristome types have been recognized. Whether peristome types define natural groups and how they are evolutionary related has, however, remained unclear. Nucleotide sequence data from one nuclear and two chloroplast loci are generated and compiled to test two contrasting hypotheses regarding the ancestral peristome type in the Arthrodonteae. The genomic data partitions are incongruent with regard to the phylogenetic signal they carry. All phylogenetic analyses converge toward the polyphyly of the Funariineae and the Funariaceae. The Funariaceae are defined by the loss of a codon in the rps4 gene. Goniomitrium acuminatum, the type of the genus, lacks this deletion, and is always resolved within the Haplolepideae

    Global patterns of moss diversity: taxonomic and molecular inferences

    Get PDF
    Taxonomic and molecular data were utilized to test the hypothesis that moss diversity is greatest near the equator. Species richness estimates from 86 taxonomic checklists representing global moss diversity do not support the hypothesis that, in general, mosses are more species-rich in the tropics than at higher latitudes

    Phylogeny, character evolution, and biogeography of the gondwanic moss family Hypopterygiaceae (Bryophyta)

    Get PDF
    Phylogenetic relationships among the seven genera of the Hypopterygiaceae, represented by 14 of the 21 species recognized in the family, were reconstructed based on variation in nucleotide sequences of six nuclear, mitochondrial, and plastid loci

    Deep sequencing of Ptilidium (Ptilidiaceae) suggests evolutionary stasis in liverwort plastid genome structure

    Get PDF
    Background and aims – Organellar genome sampling is patchy for non-vascular groups, with the earliest land plants poorly represented; currently only two liverworts, two mosses and one hornwort have sequenced, annotated plastid genomes. This is in part due to methodological difficulties that have hampered attempts to generate plastid genome data from liverworts. In this paper we present a method that overcomes some of the inherent difficulties by circumventing the need for plastid enrichment, but that also provides other valuable information from nuclear and mitochondrial regions including sequences from loci that may be phylogenetically useful, and potential population-level markers such as single nucleotide polymorphisms and microsatellites. Methods – A shotgun library developed from total genomic liverwort DNA was subjected to high-throughput pyrosequencing using the Roche 454 platform. Plastid reads were bioinformatically identified, assembled and annotated. To maximize usage of the vast number of reads generated using 454 sequencing technology, combined nuclear, mitochondrial and plastid contigs were also screened for microsatellite markers, and presumed nuclear contigs were scanned for protein domains. Key Results – This is the first plastid genome to be assembled for a leafy liverwort (i.e. Ptilidium) and also the first such genome to be sequenced using next generation technology for any bryophyte. The 119,007 base long plastid genome of Ptilidium pulcherrimum contains 88 protein-coding genes, four rRNAs and thirty tRNAs. The Inverted Repeat occurs between trn V-GAC and trn N-GUU. Functional copies of the two plastid-encoded sulphate import protein-coding genes (cysA and cysT) are absent, although pseudogenes are present in the same position that the functional genes occupy in Marchantia. Microsatellites: 197 novel potential primer pairs for P. pulcherrimum were found. Presumed nuclear Ptilidium contigs gave multiple hits to Class I transposable elements. Conclusions – The arrangement of genes is identical to the plastid of the complex thalloid liverwort Marchantia, suggesting that structural rearrangements are rare in hepatics. This dataset represents a valuable resource for novel phylogenetic and population level marker design in hepatics

    Phylogenetic significance of the rpoA loss in the chloroplast genome of mosses

    Get PDF
    A recent survey of arthrodontous mosses revealed that their chloroplast genome lacks the gene encoding the alpha subunit of the RNA polymerase (i.e., rpoA), and that at least in Physcomitrella patens the gene has been transferred to the nuclear genome. Subsequently the gene was recorded from the cytoplasmic genome in Takakia and Sphagnum. Here we extend the survey to representatives of all major lineages of mosses to determine when in the evolutionary history of the Bryophyta the loss took place. Amplifications using primers annealing to the flanking regions of the rpoA gene yield a product that contains the gene in Takakia, Sphagnum, Andreaea, Oedipodium, Polytrichaceae, and Buxbaumia. The gene is lacking in all arthrodontous mosses, including Diphyscium but also in both species of Tetraphis. Reconstruction of the transfer on the phylogeny of mosses suggests (a) that the rpoA gene was lost twice and (b) that the gene was lost after the divergence of Buxbaumiidae and prior to the divergence of Diphyscium from the remaining Bryopsida
    • …
    corecore