259 research outputs found

    A Regional Scale Modeling Analysis of Aerosol and Trace Gas Distributions over the Eastern Pacific During the INTEX-B Field Campaign

    Get PDF
    The Sulfur Transport and dEposition Model (STEM) is applied to the analysis of observations obtained during the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B), conducted over the eastern Pacific Ocean during spring 2006. Predicted trace gas and aerosol distributions over the Pacific are presented and discussed in terms of transport and source region contributions. Trace species distributions show a strong west (high) to east (low) gradient, with the bulk of the pollutant transport over the central Pacific occurring between ~20° N and 50° N in the 2–6 km altitude range. These distributions are evaluated in the eastern Pacific by comparison with the NASA DC-8 and NSF/NCAR C-130 airborne measurements along with observations from the Mt. Bachelor (MBO) surface site. Thirty different meteorological, trace gas and aerosol parameters are compared. In general the meteorological fields are better predicted than gas phase species, which in turn are better predicted than aerosol quantities. PAN is found to be significantly overpredicted over the eastern Pacific, which is attributed to uncertainties in the chemical reaction mechanisms used in current atmospheric chemistry models in general and to the specifically high PAN production in the SAPRC-99 mechanism used in the regional model. A systematic underprediction of the elevated sulfate layer in the eastern Pacific observed by the C-130 is another issue that is identified and discussed. Results from source region tagged CO simulations are used to estimate how the different source regions around the Pacific contribute to the trace gas species distributions. During this period the largest contributions were from China and from fires in South/Southeast and North Asia. For the C-130 flights, which operated off the coast of the Northwest US, the regional CO contributions range as follows: China (35%), South/Southeast Asia fires (35%), North America anthropogenic (20%), and North Asia fires (10%). The transport of pollution into the western US is studied at MBO and a variety of events with elevated Asian dust, and periods with contributions from China and fires from both Asia and North America are discussed. The role of heterogeneous chemistry on the composition over the eastern Pacific is also studied. The impacts of heterogeneous reactions at specific times can be significant, increasing sulfate and nitrate aerosol production and reducing gas phase nitric acid levels appreciably (~50%)

    Detailed Comparisons of Airborne Formaldehyde Measurements with Box Models during the 2006 INTEX-B and MILAGRO Campaigns: Potential Evidence for Significant Impacts of Unmeasured and Multi-Generation Volatile Organic Carbon Compounds

    Get PDF
    Detailed comparisons of airborne CH2O measurements acquired by tunable diode laser absorption spectroscopy with steady state box model calculations were carried out using data from the 2006 INTEX-B and MILARGO campaign in order to improve our understanding of hydrocarbon oxidation processing. This study includes comparisons over Mexico (including Mexico City), the Gulf of Mexico, parts of the continental United States near the Gulf coast, as well as the more remote Pacific Ocean, and focuses on comparisons in the boundary layer. Select previous comparisons in other campaigns have highlighted some locations in the boundary layer where steady state box models have tended to underpredict CH2O, suggesting that standard steady state modeling assumptions might be unsuitable under these conditions, and pointing to a possible role for unmeasured hydrocarbons and/or additional primary emission sources of CH2O. Employing an improved instrument, more detailed measurement-model comparisons with better temporal overlap, up-to-date measurement and model precision estimates, up-to-date rate constants, and additional modeling tools based on both Lagrangian and Master Chemical Mechanism (MCM) runs, we have explained much of the disagreement between observed and predicted CH2O as resulting from non-steady-state atmospheric conditions in the vicinity of large pollution sources, and have quantified the disagreement as a function of plume lifetime (processing time). We show that in the near field (within ~4 to 6 h of the source), steady-state models can either over-or-underestimate observations, depending on the predominant non-steady-state influence. In addition, we show that even far field processes (10–40 h) can be influenced by non-steady-state conditions which can be responsible for CH2O model underestimations by ~20%. At the longer processing times in the 10 to 40 h range during Mexico City outflow events, MCM model calculations, using assumptions about initial amounts of high-order NMHCs, further indicate the potential importance of CH2O produced from unmeasured and multi-generation hydrocarbon oxidation compounds, particularly methylglyoxal, 3-hydroxypropanal, and butan-3-one-al

    Formaldehyde over the central Pacific during PEM-Tropics B

    Get PDF
    Formaldehyde, CH2O, mixing ratios are reported for the central Pacific troposphere from a series of 41 flights, which took place in March-April 1999 as part of the NASA Pacific Exploratory Mission (PEM) -Tropics B mission. Ambient CH2O was collected in aqueous media and quantified using an enzyme-derivatization fluorescence technique. Primary calibration was performed using aqueous standards and known flow rates. Occasionally, CH2O gas standard additions to ambient air were performed as a secondary calibration. Analytical blanks were determined by replacing ambient air with pure air. The estimated precision was ±30 pptv and the estimated accuracy was the sum of ±30 parts per trillion by volume (pptv) ±15% of the measured value. Approximately 25% of the observations were less than the instrumental detection limit of 50 pptv, and 85% of these occurred above 6 km. CH2O mixing ratios decreased with altitude; for example, near the equator the median value in the lowest 2 km was 275 pptv, decreased to 150 pptv by 6 km and was below 100 pptv above 8 km. Between 130 and 170 W and below 1km, a small variation of CH2O mixing ratio with latitude was noted as near-surface median mixing ratios decreased near the equator (275 pptv) and were greater on either side (375 pptv). A marked decrease in near-surface CH2O (200 pptv) was noted south of 23° S on two flights. Between 3° and 23° S, median CH2O mixing ratios were lower in the eastern tropical Pacific than in the western or central Pacific; nominal differences were >100 pptv near the surface to ∼100 pptv at midaltitude to ∼50 pptv at high altitude. Off the coast of Central America and Mexico, mixing ratios as high as 1200 pptv were observed in plumes that originated to the east over land. CH2O observations were consistently higher than the results from a point model constrained by other photochemical species and meteorological parameters. Regardless of latitude or longitude, agreement was best at altitudes above 4 km where the difference between measured and modeled CH2O medians was less than 50 pptv. Below 2 km the model median was approximately 150 pptv less than the measured median. Copyright 2001 by the American Geophysical Union

    Marine latitude/altitude OH distributions: Comparison of Pacific Ocean observations with models

    Get PDF
    Reported here are tropical/subtropical Pacific basin OH observational data presented in a latitude/altitude geographical grid. They cover two seasons of the year (spring and fall) that reflect the timing of NASA's PEM-Tropics A (1996) and B (1999) field programs. Two different OH sensors were used to collect these data, and each instrument was mounted on a different aircraft platform (i.e., NASA's P-3B and DC-8). Collectively, these chemical snapshots of the central Pacific have revealed several interesting trends. Only modest decreases (factors of 2 to 3) were found in the levels of OH with increasing altitude (0-12 km). Similarly, only modest variations were found (factors of 1.5 to 3.5) when the data were examined as a function of latitude (30° N to 30° S). Using simultaneously recorded data for CO, O3, H2O, NO, and NMHCs, comparisons with current models were also carried out. For three out of four data subsets, the results revealed a high level of correspondence. On average, the box model results agreed with the observations within a factor of 1.5. The comparison with the three-dimensional model results was found to be only slightly worse. Overall, these results suggest that current model mechanisms capture the major photochemical processes controlling OH quite well and thus provide a reasonably good representation of OH levels for tropical marine environments. They also indicate that the two OH sensors employed during the PEM-Tropics B study generally saw similar OH levels when sampling a similar tropical marine environment. However, a modest altitude bias appears to exist between these instruments. More rigorous instrument intercomparison activity would therefore seem to be justified. Further comparisons of model predictions with observations are also recommended for nontropical marine environments as well as those involving highly elevated levels of reactive non-methane hydrocarbons. Copyright 2001 by the American Geophysical Union

    Improved Thermoelectric Cooling Based on the Thomson Effect

    Get PDF
    Traditional thermoelectric Peltier coolers exhibit a cooling limit which is primarily determined by the figure of merit, zT. Rather than a fundamental thermodynamic limit, this bound can be traced to the difficulty of maintaining thermoelectric compatibility. Self-compatibility locally maximizes the cooler's coefficient of performance for a given zT and can be achieved by adjusting the relative ratio of the thermoelectric transport properties that make up zT. In this study, we investigate the theoretical performance of thermoelectric coolers that maintain self-compatibility across the device. We find such a device behaves very differently from a Peltier cooler, and term self-compatible coolers "Thomson coolers" when the Fourier heat divergence is dominated by the Thomson, as opposed to the Joule, term. A Thomson cooler requires an exponentially rising Seebeck coefficient with increasing temperature, while traditional Peltier coolers, such as those used commercially, have comparatively minimal change in Seebeck coefficient with temperature. When reasonable material property bounds are placed on the thermoelectric leg, the Thomson cooler is predicted to achieve approximately twice the maximum temperature drop of a traditional Peltier cooler with equivalent figure of merit (zT). We anticipate the development of Thomson coolers will ultimately lead to solid state cooling to cryogenic temperatures.Comment: The Manuscript has been revised for publication in PR
    • …
    corecore