233 research outputs found

    Human blood-brain barrier receptors for Alzheimer's amyloid-beta 1- 40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer.

    Get PDF
    This is the published version. Copyright 1998 by American Society for Clinical Investigation.A soluble monomeric form of Alzheimer's amyloid-beta (1-40) peptide (sAbeta1-40) is present in the circulation and could contribute to neurotoxicity if it crosses the brain capillary endothelium, which comprises the blood-brain barrier (BBB) in vivo. This study characterizes endothelial binding and transcytosis of a synthetic peptide homologous to human sAbeta1-40 using an in vitro model of human BBB. 125I-sAbeta1-40 binding to the brain microvascular endothelial cell monolayer was time dependent, polarized to the apical side, and saturable with high- and low-affinity dissociation constants of 7.8+/-1.2 and 52.8+/-6.2 nM, respectively. Binding of 125I-sAbeta1-40 was inhibited by anti-RAGE (receptor for advanced glycation end products) antibody (63%) and by acetylated low density lipoproteins (33%). Consistent with these data, transfected cultured cells overexpressing RAGE or macrophage scavenger receptor (SR), type A, displayed binding and internalization of 125I-sAbeta1-40. The internalized peptide remains intact > 94%. Transcytosis of 125I-sAbeta1-40 was time and temperature dependent, asymmetrical from the apical to basolateral side, saturable with a Michaelis constant of 45+/-9 nM, and partially sensitive to RAGE blockade (36%) but not to SR blockade. We conclude that RAGE and SR mediate binding of sAbeta1-40 at the apical side of human BBB, and that RAGE is also involved in sAbeta1-40 transcytosis

    Optimal MHC-II-restricted tumor antigen presentation to CD4+ T helper cells: the key issue for development of anti-tumor vaccines

    Get PDF
    Present immunoprevention and immunotherapeutic approaches against cancer suffer from the limitation of being not “sterilizing” procedures, as very poor protection against the tumor is obtained. Thus newly conceived anti-tumor vaccination strategies are urgently needed. In this review we will focus on ways to provide optimal MHC class II-restricted tumor antigen presentation to CD4+ T helper cells as a crucial parameter to get optimal and protective adaptive immune response against tumor. Through the description of successful preventive or therapeutic experimental approaches to vaccinate the host against the tumor we will show that optimal activation of MHC class II-restricted tumor specific CD4+ T helper cells can be achieved in various ways. Interestingly, the success in tumor eradication and/or growth arrest generated by classical therapies such as radiotherapy and chemotherapy in some instances can be re-interpreted on the basis of an adaptive immune response induced by providing suitable access of tumor-associated antigens to MHC class II molecules. Therefore, focussing on strategies to generate better and suitable MHC class II–restricted activation of tumor specific CD4+ T helper cells may have an important impact on fighting and defeating cancer
    • …
    corecore