3,348 research outputs found
Associated production of charged Higgs bosons and top quarks with POWHEG
The associated production of charged Higgs bosons and top quarks at hadron
colliders is an important discovery channel to establish the existence of a
non-minimal Higgs sector. Here, we present details of a next-to-leading order
(NLO) calculation of this process using the Catani-Seymour dipole formalism and
describe its implementation in POWHEG, which allows to match NLO calculations
to parton showers. Numerical predictions are presented using the PYTHIA parton
shower and are compared to those obtained previously at fixed order, to a
leading order calculation matched to the PYTHIA parton shower, and to a
different NLO calculation matched to the HERWIG parton shower with MC@NLO. We
also present numerical predictions and theoretical uncertainties for various
Two Higgs Doublet Models at the Tevatron and LHC.Comment: 36 page
Recommended from our members
Search for MSSM Higgs bosons decaying to μ+μ-in proton-proton collisions at √s=13TeV
A search is performed for neutral non-standard-model Higgs bosons decaying to two muons in the context of the minimal supersymmetric standard model (MSSM). Proton-proton collision data recorded by the CMS experiment at the CERN Large Hadron Collider at a center-of-mass energy of 13TeVwere used, corresponding to an integrated luminosity of 35.9fb-1. The search is sensitive to neutral Higgs bosons produced via the gluon fusion process or in association with a bbquark pair. No significant deviations from the standard model expectation are observed. Upper limits at 95% confidence level are set in the context of the mmod+hand phenomenological MSSM scenarios on the parameter tanβas a function of the mass of the pseudoscalar Aboson, in the range from 130 to 600GeV. The results are also used to set a model-independent limit on the product of the branching fraction for the decay into a muon pair and the cross section for the production of a scalar neutral boson, either via gluon fusion, or in association with bquarks, in the mass range from 130 to 1000GeV
Recommended from our members
Studies of Bs2∗(5840)0 and Bs1(5830)0 mesons including the observation of the Bs2∗(5840)0→B0KS0 decay in proton-proton collisions at s=8TeV.
Measurements of Bs2∗(5840)0 and Bs1(5830)0 mesons are performed using a data sample of proton-proton collisions corresponding to an integrated luminosity of , collected with the CMS detector at the LHC at a centre-of-mass energy of 8TeV . The analysis studies P-wave Bs0 meson decays into B(∗)+K- and B(∗)0KS0 , where the B+ and B0 mesons are identified using the decays B+→J/ψK+ and B0→J/ψK∗(892)0 . The masses of the P-wave Bs0 meson states are measured and the natural width of the Bs2∗(5840)0 state is determined. The first measurement of the mass difference between the charged and neutral B∗ mesons is also presented. The Bs2∗(5840)0 decay to B0KS0 is observed, together with a measurement of its branching fraction relative to the Bs2∗(5840)0→B+K- decay
Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV
A study of the B +→ J / ψ Λ ¯ p decay using proton-proton collision data collected at s = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb−1, is presented. The ratio of branching fractions B(B+→J/ψΛ¯p)/B(B+→J/ψK∗(892)+) is measured to be (1.054 ± 0.057(stat) ± 0.035(syst) ± 0.011(B))%, where the last uncertainty reflects the uncertainties in the world-average branching fractions of Λ ¯ and K*(892) + decays to reconstructed final states. The invariant mass distributions of the J / ψ Λ ¯ , J/ψp, and Λ ¯ p systems produced in the B +→ J / ψ Λ¯ p decay are investigated and found to be inconsistent with the pure phase space hypothesis. The analysis is extended by using a model-independent angular amplitude analysis, which shows that the observed invariant mass distributions are consistent with the contributions from excited kaons decaying to the Λ ¯ p system. [Figure not available: see fulltext.
- …