13 research outputs found

    Time-dependent correlations in quantum magnets at finite temperature

    Get PDF
    In this article we investigate the time dependence of the gap mode of copper nitrate at various temperatures. We combine state-of-the-art theoretical calculations with high precision neutron resonance spin-echo measurements to understand the anomalous decoherence effects found previously in this material. It is shown that the time domain offers a complementary view on this phenomenon, which allows us to directly compare experimental data and theoretical predictions without the need of further intensive data analysis, such as (de)convolution.Comment: 6 pages, 5 figure

    Magnetic excitations in the S = 1/2 antiferromagnetic-ferromagnetic chain compound BaCu2V2O8 at zero and finite temperature

    Get PDF
    Unlike most quantum systems which rapidly become incoherent as temperature is raised, strong correlations persist at elevated temperatures in S=1/2S=1/2 dimer magnets, as revealed by the unusual asymmetric lineshape of their excitations at finite temperatures. Here we quantitatively explore and parameterize the strongly correlated magnetic excitations at finite temperatures using the high resolution inelastic neutron scattering on the model compound BaCu2_2V2_2O8_8 which we show to be an alternating antiferromagnetic-ferromagnetic spin−1/2-1/2 chain. Comparison to state of the art computational techniques shows excellent agreement over a wide temperature range. Our findings hence demonstrate the possibility to quantitatively predict coherent behavior at elevated temperatures in quantum magnets.Comment: 5 pages + 6 pages supplement; problems with list of references are fixe

    From Gapped Excitons to Gapless Triplons in One Dimension

    Full text link
    Often, exotic phases appear in the phase diagrams between conventional phases. Their elementary excitations are of particular interest. Here, we consider the example of the ionic Hubbard model in one dimension. This model is a band insulator (BI) for weak interaction and a Mott insulator (MI) for strong interaction. Inbetween, a spontaneously dimerized insulator (SDI) occurs which is governed by energetically low-lying charge and spin degrees of freedom. Applying a systematically controlled version of the continuous unitary transformations (CUTs) we are able to determine the dispersions of the elementary charge and spin excitations and of their most relevant bound states on equal footing. The key idea is to start from an externally dimerized system using the relative weak interdimer coupling as small expansion parameter which finally is set to unity to recover the original model.Comment: 18 pages, 10 figure

    Classification and characterization of nonequilibrium Higgs modes in unconventional superconductors

    No full text
    Recent findings of new Higgs modes in unconventional superconductors require a classification and characterization of the modes allowed by nontrivial gap symmetry. Here we develop a theory for a tailored nonequilibrium quantum quench to excite all possible oscillation symmetries of a superconducting condensate. We show that both a finite momentum transfer and quench symmetry allow for an identification of the resulting Higgs oscillations. These serve as a fingerprint for the ground state gap symmetry. We provide a classification scheme of these oscillations and the quench symmetry based on group theory for the underlying lattice point group. For characterization, analytic calculations as well as full scale numeric simulations of the transient optical response resulting from an excitation by a realistic laser pulse are performed. Our classification of Higgs oscillations allows us to distinguish between different symmetries of the superconducting condensate
    corecore