18,033 research outputs found

    An equation of state for oxygen and nitrogen

    Get PDF
    Recent measurements of thermodynamic properties of oxygen and nitrogen have provided data necessary for development of a single equation of state for both fluids. Data are available in summary report and two-part detailed study on thermodynamic properties of oxygen and nitrogen. Same data are used to develop vapor-pressure equation and heat-capacity equation

    The thermodynamic properties of oxygen and nitrogen. Part 2: Thermodynamic properties of oxygen from 100 R to 600 R with pressure to 5000 psia

    Get PDF
    An equation of state is presented for liquid and gaseous oxygen for temperatures from 100 R to 600 R and pressures to 5000 psia. The pressure-density-temperature data available from the published literature have been reviewed, and appropriate corrections have been applied to bring experimental temperatures into accord with the International Practical Temperature Scale of 1968. Representative comparisons of property values calculated from the equation of state to measured values are included to illustrate the accuracy of the equation of state. The coefficients of the equation of state were determined by a weighted least squares fit to selected published data, and simultaneously to isochoric heat capacity data, and to data which define the phase equilibrium for the saturated liquid and saturated vapor. The equation of state is estimated to be accurate for the liquid to within 0.1 percent in density, to within 0.2 percent for the vapor below the critical temperature and for states above the critical temperatures to 250 K, and within 0.1 percent for supercritical states at temperatures from 250 K to 300 K. The vapor pressure equation is accurate to within + or - 0.01 K between the triple point and the critical point

    An equation of state for oxygen and nitrogen

    Get PDF
    Preliminary equations of state are presented for oxygen and nitrogen which provide accurate representations of the available P-density-T data for both fluids. The equation for nitrogen is applicable for temperatures from 70 K to 1300 K at pressures to 10,000 atmospheres, and the equation for oxygen for temperatures from 70 K to 323 K at pressures to 350 atmospheres. Deviations of calculated densities from representative experimental data are included. A volume-explicit equation of state for oxygen to be used in estimating density values in the range of applicability of the equation of state is also presented

    The thermodynamic properties of oxygen and nitrogen. Part 1: Thermodynamic properties of nitrogen from 115 R to 3500 R with pressures to 150000 psia

    Get PDF
    An equation of state is presented for liquid and gaseous nitrogen for temperatures from 115 R to 3500 R and pressures to 150,000 psia. All of the pressure-density-temperature data available from the published literature have been reviewed, and appropriate corrections have been identified and applied to bring experimental temperatures into accord with the International Practical Temperature Scale of 1968. Comparisons of property values calculated from the equation of state to measured values are included to illustrate the accuracy of the equation in representing the data. The coefficients of the equation of state were determined by a weighted least squares fit to selected published data and, simultaneously, to constant volume data determined by corresponding states analysis from oxygen data, and to data which define the phase equilibrium criteria for the saturated liquid and saturated vapor. The methods of weighting the various data for simultaneous fitting are presented and discussed. The equation of state is estimated to be accurate to within 0.5 percent in the liquid region, to within 0.1 percent for supercritical isotherms up to 15,000 psia, and to within 0.3 percent from 15,000 to 150,000 psia

    Building phonetic categories: an argument for the role of sleep

    Get PDF
    The current review provides specific predictions for the role of sleep-mediated memory consolidation in the formation of new speech sound representations. Specifically, this discussion will highlight selected literature on the different ideas concerning category representation in speech, followed by a broad overview of memory consolidation and how it relates to human behavior, as relevant to speech/perceptual learning. In combining behavioral and physiological accounts from animal models with insights from the human consolidation literature on auditory skill/word learning, we are in the early stages of understanding how the transfer of experiential information between brain structures during sleep manifests in changes to online perception. Arriving at the conclusion that this process is crucial in perceptual learning and the formation of novel categories, further speculation yields the adjacent claim that the habitual disruption in this process leads to impoverished quality in the representation of speech sounds

    Pupillometry, a bioengineering overview

    Get PDF
    The pupillary control system is examined using a microprocessor based integrative pupillometer. The real time software functions of the microprocessor include: data collection, stimulus generation and area to diameter conversion. Results of an analysis of linear and nonlinear phenomena are presented

    Black Holes with a Generalized Gravitational Action

    Full text link
    Microscopic black holes are sensitive to higher dimension operators in the gravitational action. We compute the influence of these operators on the Schwarzschild solution using perturbation theory. All (time reversal invariant) operators of dimension six are included (dimension four operators don't alter the Schwarzschild solution). Corrections to the relation between the Hawking temperature and the black hole mass are found. The entropy is calculated using the Gibbons-Hawking prescription for the Euclidean path integral and using naive thermodynamic reasoning. These two methods agree, however, the entropy is not equal to 1/4 the area of the horizon.Comment: plain tex(uses phyzzx.tex), 8 pages, CALT-68-185

    Charge Influence On Mini Black Hole's Cross Section

    Full text link
    In this work we study the electric charge effect on the cross section production of charged mini black holes (MBH) in accelerators. We analyze the charged MBH solution using the {\it fat brane} approximation in the context of the ADD model. The maximum charge-mass ratio condition for the existence of a horizon radius is discussed. We show that the electric charge causes a decrease in this radius and, consequently, in the cross section. This reduction is negligible for protons and light ions but can be important for heavy ions.Comment: 4 pages, 0 figure. To be published in Int. J. Mod. Phys. D
    corecore