1,003 research outputs found

    Correlation Lengths and Topological Entanglement Entropies of Unitary and Non-Unitary Fractional Quantum Hall Wavefunctions

    Full text link
    Using the newly developed Matrix Product State (MPS) formalism for non-abelian Fractional Quantum Hall (FQH) states, we address the question of whether a FQH trial wave function written as a correlation function in a non-unitary Conformal Field Theory (CFT) can describe the bulk of a gapped FQH phase. We show that the non-unitary Gaffnian state exhibits clear signatures of a pathological behavior. As a benchmark we compute the correlation length of Moore-Read state and find it to be finite in the thermodynamic limit. By contrast, the Gaffnian state has infinite correlation length in (at least) the non-Abelian sector, and is therefore gapless. We also compute the topological entanglement entropy of several non-abelian states with and without quasiholes. For the first time in FQH the results are in excellent agreement in all topological sectors with the CFT prediction for unitary states. For the non-unitary Gaffnian state in finite size systems, the topological entanglement entropy seems to behave like that of the Composite Fermion Jain state at equal filling.Comment: 5 pages, 5 figures, and supplementary material. Published versio

    Matrix Product State Description and Gaplessness of the Haldane-Rezayi State

    Full text link
    We derive an exact matrix product state representation of the Haldane-Rezayi state on both the cylinder and torus geometry. Our derivation is based on the description of the Haldane-Rezayi state as a correlator in a non-unitary logarithmic conformal field theory. This construction faithfully captures the ten degenerate ground states of this model state on the torus. Using the cylinder geometry, we probe the gapless nature of the phase by extracting the correlation length, which diverges in the thermodynamic limit. The numerically extracted topological entanglement entropies seem to only probe the Abelian part of the theory, which is reminiscent of the Gaffnian state, another model state deriving from a non-unitary conformal field theory.Comment: Corrected labels in Fig.

    Braiding non-Abelian quasiholes in fractional quantum Hall states

    Full text link
    Quasiholes in certain fractional quantum Hall states are promising candidates for the experimental realization of non-Abelian anyons. They are assumed to be localized excitations, and to display non-Abelian statistics when sufficiently separated, but these properties have not been explicitly demonstrated except for the Moore-Read state. In this work, we apply the newly developed matrix product state technique to examine these exotic excitations. For the Moore-Read and the Z3\mathbb{Z}_3 Read-Rezayi states, we estimate the quasihole radii, and determine the correlation lengths associated with the exponential convergence of the braiding statistics. We provide the first microscopic verification for the Fibonacci nature of the Z3\mathbb{Z}_3 Read-Rezayi quasiholes. We also present evidence for the failure of plasma screening in the non-unitary Gaffnian wave function.Comment: 9 pages, 9 figures; published versio

    Matrix product state representation of non-Abelian quasiholes

    Full text link
    We provide a detailed explanation of the formalism necessary to construct matrix product states for non-Abelian quasiholes in fractional quantum Hall model states. Our construction yields an efficient representation of the wave functions with conformal-block normalization and monodromy, and complements the matrix product state representation of fractional quantum Hall ground states.Comment: 14 pages, 2 figures; published versio

    Spin-Singlet Quantum Hall States and Jack Polynomials with a Prescribed Symmetry

    Full text link
    We show that a large class of bosonic spin-singlet Fractional Quantum Hall model wave-functions and their quasi-hole excitations can be written in terms of Jack polynomials with a prescribed symmetry. Our approach describes new spin-singlet quantum Hall states at filling fraction nu = 2k/(2r-1) and generalizes the (k,r) spin-polarized Jack polynomial states. The NASS and Halperin spin singlet states emerge as specific cases of our construction. The polynomials express many-body states which contain configurations obtained from a root partition through a generalized squeezing procedure involving spin and orbital degrees of freedom. The corresponding generalized Pauli principle for root partitions is obtained, allowing for counting of the quasihole states. We also extract the central charge and quasihole scaling dimension, and propose a conjecture for the underlying CFT of the (k, r) spin-singlet Jack states.Comment: 17 pages, 1 figur

    Matrix Product State description of the Halperin States

    Full text link
    Many fractional quantum Hall states can be expressed as a correlator of a given conformal field theory used to describe their edge physics. As a consequence, these states admit an economical representation as an exact Matrix Product States (MPS) that was extensively studied for the systems without any spin or any other internal degrees of freedom. In that case, the correlators are built from a single electronic operator, which is primary with respect to the underlying conformal field theory. We generalize this construction to the archetype of Abelian multicomponent fractional quantum Hall wavefunctions, the Halperin states. These latest can be written as conformal blocks involving multiple electronic operators and we explicitly derive their exact MPS representation. In particular, we deal with the caveat of the full wavefunction symmetry and show that any additional SU(2) symmetry is preserved by the natural MPS truncation scheme provided by the conformal dimension. We use our method to characterize the topological order of the Halperin states by extracting the topological entanglement entropy. We also evaluate their bulk correlation length which are compared to plasma analogy arguments.Comment: 23 pages, 16 figure
    • 

    corecore