7 research outputs found

    The receptor kinase SRF3 coordinates iron- level and flagellin dependent defense and growth responses in plants

    Get PDF
    Iron is critical for host–pathogen interactions. While pathogens seek to scavenge iron to spread, the host aims at decreasing iron availability to reduce pathogen virulence. Thus, iron sensing and homeostasis are of particular importance to prevent host infection and part of nutritional immunity. While the link between iron homeostasis and immunity pathways is well established in plants, how iron levels are sensed and integrated with immune response pathways remains unknown. Here we report a receptor kinase SRF3, with a role in coordinating root growth, iron homeostasis and immunity pathways via regulation of callose synthases. These processes are modulated by iron levels and rely on SRF3 extracellular and kinase domains which tune its accumulation and partitioning at the cell surface. Mimicking bacterial elicitation with the flagellin peptide flg22 phenocopies SRF3 regulation upon low iron levels and subsequent SRF3-dependent responses. We propose that SRF3 is part of nutritional immunity responses involved in sensing external iron levels

    An optimized clearing protocol for the quantitative assessment of sub-epidermal ovule tissues within whole cereal pistils

    Get PDF
    Background: Seed development in the angiosperms requires the production of a female gametophyte (embryo sac) within the ovule. Many aspects of female reproductive development in cereal crops are yet to be described, largely due to the technical difficulty in obtaining phenotypic information at the cellular or sub-cellular level. Hoyer’s solution is currently well established as a solution for clearing thin tissues samples, such as sections or whole tissues of bryophytes, mycorrhizal fungi, and small model organisms (e.g. Arabidopsis thaliana). Results: Here we report a Hoyer’s solution-based clearing method to facilitate clearing of the whole barley pistil, with high reproducibility. The clearing process takes 10 days from fixation to visualisation, whereupon tissue is sufficiently clear to obtain multiple phenotypic measurements from sub-epidermal tissues and cells within the ovule. Conclusion: Visualisation of cereal ovules that have not been dissected from the pistil allows an unprecedented capability to collect quantitative morphological information from the developing ovule, integument, nucellus and embryo sac. This will enable comparisons with genetic data to reveal the contribution of pre-fertilisation ovule tissues towards downstream seed development.Laura G. Wilkinson and Matthew R. Tucke

    Studying cell division plane positioning in early-stage embryos

    No full text
    Unraveling the mechanisms that govern division plane orientation is a major challenge to understand plant development. In this respect, the Arabidopsis early embryo is a model system of choice since embryogenesis is relatively simple and cell division planes orientation is highly predictable. Here, we present an integrated set of protocols to study 3D cell division patterns in early-stage Arabidopsis embryos that combine both cellular and sub-cellular localization of selected protein markers with spatial organization of cells, cytoskeleton, and nuclei

    The Role of Auxin for Reproductive Organ Patterning and Development

    No full text
    corecore