4,164 research outputs found

    Photoassociation spectra and the validity of the dipole approximation for weakly bound dimers

    Full text link
    Photoassociation (PA) of ultracold metastable helium to the 2s2p manifold is theoretically investigated using a non-perturbative close-coupled treatment in which the laser coupling is evaluated without assuming the dipole approximation. The results are compared with our previous study [Cocks and Whittingham, Phys. Rev. A 80, 023417 (2009)] that makes use of the dipole approximation. The approximation is found to strongly affect the PA spectra because the photoassociated levels are weakly bound, and a similar impact is predicted to occur in other systems of a weakly bound nature. The inclusion or not of the approximation does not affect the resonance positions or widths, however significant differences are observed in the background of the spectra and the maximum laser intensity at which resonances are discernable. Couplings not satisfying the dipole selection rule |J-1| <= J' <= |J+1| do not lead to observable resonances.Comment: 5 pages, 2 figures; Minor textual revision

    Exotic solutions in string theory

    Get PDF
    Solutions of classical string theory, correspondent to the world sheets, mapped in Minkowsky space with a fold, are considered. Typical processes for them are creation of strings from vacuum, their recombination and annihilation. These solutions violate positiveness of square of mass and Regge condition. In quantum string theory these solutions correspond to physical states |DDF>+|sp> with non-zero spurious component.Comment: accepted in Il Nuovo Cimento A for publication in 199

    Relativistic Coulomb problem for particles with arbitrary half-integer spin

    Full text link
    Using relativistic tensor-bispinorial equations proposed in hep-th/0412213 we solve the Kepler problem for a charged particle with arbitrary half-integer spin interacting with the Coulomb potential.Comment: Misprints are correcte

    Curve crossing in linear potential grids: the quasidegeneracy approximation

    Get PDF
    The quasidegeneracy approximation [V. A. Yurovsky, A. Ben-Reuven, P. S. Julienne, and Y. B. Band, J. Phys. B {\bf 32}, 1845 (1999)] is used here to evaluate transition amplitudes for the problem of curve crossing in linear potential grids involving two sets of parallel potentials. The approximation describes phenomena, such as counterintuitive transitions and saturation (incomplete population transfer), not predictable by the assumption of independent crossings. Also, a new kind of oscillations due to quantum interference (different from the well-known St\"uckelberg oscillations) is disclosed, and its nature discussed. The approximation can find applications in many fields of physics, where multistate curve crossing problems occur.Comment: LaTeX, 8 pages, 8 PostScript figures, uses REVTeX and psfig, submitted to Physical Review

    Optimal processing of noisy images in a photodetector with limited dynamic range

    Get PDF
    A study aimed at optimizing noisy image processing under conditions of strong additive noise has been performed. An algorithm of optimal signal processing was developed and a possibility of improving image quality due to the subtraction of excess additive noise (which limits the photodetector dynamic range) was substantiated. The possibility of technical implementation of noise subtraction due to forced recombination of charge carriers in the photodetector is experimentally confirmed. The proposed approach to design processing systems makes it possible to improve the quality of recorded images under noisy conditions without any changes in the photodetector desig

    Landau-Zener Problem for Trilinear Hamiltonians

    Full text link
    We consider a nonlinear version of the Landau-Zener problem, focusing on photoassociation of a Bose-Einstein condensate as a specific example. Contrary to the exponential rate dependence obtained for the linear problem, a series expansion technique indicates that, when the resonance is crossed slowly, the probability for failure of adiabaticity is directly proportional to the rate at which the resonance is crossed.Comment: 4.5 pages, 1 figure, transferred to PRA; v2 adds discussion, clarification, and explicit numbers for Na and 87R

    Magnetic and spectral properties of multi-sublattice oxides SrY2O4:Er3+ and SrEr2O4

    Get PDF
    SrEr2O4 is a geometrically frustrated magnet which demonstrates rather unusual properties at low temperatures including a coexistence of long- and short-range magnetic order, characterized by two different propagation vectors. In the present work, the effects of crystal fields (CF) in this compound containing four magnetically inequivalent erbium sublattices are investigated experimentally and theoretically. We combine the measurements of the CF levels of the Er3+ ions made on a powder sample of SrEr2O4 using neutron spectroscopy with site-selective optical and electron paramagnetic resonance measurements performed on single crystal samples of the lightly Er-doped nonmagnetic analogue, SrY2O4. Two sets of CF parameters corresponding to the Er3+ ions at the crystallographically inequivalent lattice sites are derived which fit all the available experimental data well, including the magnetization and dc susceptibility data for both lightly doped and concentrated samples.Comment: 14 pages, 9 figure
    corecore