6,271 research outputs found

    Characterizing a benchmark scenario for heavy Higgs boson searches in the Georgi-Machacek model

    Full text link
    The Georgi-Machacek model is used to motivate and interpret LHC searches for doubly- and singly-charged Higgs bosons decaying into vector boson pairs. In this paper we study the constraints on and phenomenology of the "H5plane" benchmark scenario in the Georgi-Machacek model, which has been proposed for use in these searches. We show that the entire H5plane benchmark is compatible with the LHC measurements of the 125 GeV Higgs boson couplings. We also point out that, over much of the H5plane benchmark, the lineshapes of the two CP-even neutral heavy Higgs bosons HH and H50H_5^0 will overlap and interfere when produced in vector boson fusion with decays to W+W−W^+W^- or ZZZZ. Finally we compute the decay branching ratios of the additional heavy Higgs bosons within the H5plane benchmark to facilitate the development of search strategies for these additional particles.Comment: 18 pages, 18 figures. v2: title changed, refs added, discussion clarified, version accepted by PR

    Magnetic properties of the Anderson model: a local moment approach

    Full text link
    We develop a local moment approach to static properties of the symmetric Anderson model in the presence of a magnetic field, focussing in particular on the strong coupling Kondo regime. The approach is innately simple and physically transparent; but is found to give good agreement, for essentially all field strengths, with exact results for the Wilson ratio, impurity magnetization, spin susceptibility and related properties.Comment: 7 pages, 3 postscript figues. Latex 2e using the epl.cls Europhysics Letters macro packag

    A local moment approach to the degenerate Anderson impurity model

    Full text link
    The local moment approach is extended to the orbitally-degenerate [SU(2N)] Anderson impurity model (AIM). Single-particle dynamics are obtained over the full range of energy scales, focussing here on particle-hole symmetry in the strongly correlated regime where the onsite Coulomb interaction leads to many-body Kondo physics with entangled spin and orbital degrees of freedom. The approach captures many-body broadening of the Hubbard satellites, recovers the correct exponential vanishing of the Kondo scale for all N, and its universal scaling spectra are found to be in very good agreement with numerical renormalization group (NRG) results. In particular the high-frequency logarithmic decays of the scaling spectra, obtained here in closed form for arbitrary N, coincide essentially perfectly with available numerics from the NRG. A particular case of an anisotropic Coulomb interaction, in which the model represents a system of N `capacitively-coupled' SU(2) AIMs, is also discussed. Here the model is generally characterised by two low-energy scales, the crossover between which is seen directly in its dynamics.Comment: 23 pages, 7 figure

    Interplay between Kondo physics and spin-orbit coupling in carbon nanotube quantum dots

    Full text link
    We investigate the influence of spin-orbit coupling on the Kondo effects in carbon nanotube quantum dots, using the numerical renormalization group technique. A sufficiently large spin-orbit coupling is shown to destroy the SU(4) Kondo effects at zero magnetic field, leaving only two SU(2) Kondo effects in the one- and three-electron Coulomb blockade valleys. On applying a finite magnetic field, two additional, spin-orbit induced SU(2) Kondo effects arise in the three- and two-electron valleys. Using physically realistic model parameters, we calculate the differential conductance over a range of gate voltages, temperatures and fields. The results agree well with measurements from two different experimental devices in the literature, and explain a number of observations that are not described within the standard framework of the SU(4) Anderson impurity model.Comment: 15 pages, 11 figure

    Field-dependent dynamics of the Anderson impurity model

    Full text link
    Single-particle dynamics of the Anderson impurity model in the presence of a magnetic field HH are considered, using a recently developed local moment approach that encompasses all energy scales, field and interaction strengths. For strong coupling in particular, the Kondo scaling regime is recovered. Here the frequency (ω/ωK\omega/\omega_{\rm K}) and field (H/ωKH/\omega_{\rm K}) dependence of the resultant universal scaling spectrum is obtained in large part analytically, and the field-induced destruction of the Kondo resonance investigated. The scaling spectrum is found to exhibit the slow logarithmic tails recently shown to dominate the zero-field scaling spectrum. At the opposite extreme of the Fermi level, it gives asymptotically exact agreement with results for statics known from the Bethe ansatz. Good agreement is also found with the frequency and field-dependence of recent numerical renormalization group calculations. Differential conductance experiments on quantum dots in the presence of a magnetic field are likewise considered; and appear to be well accounted for by the theory. Some new exact results for the problem are also established

    Local quantum phase transition in the pseudogap Anderson model: scales, scaling and quantum critical dynamics

    Full text link
    The pseudogap Anderson impurity model provides a paradigm for understanding local quantum phase transitions, in this case between generalised fermi liquid and degenerate local moment phases. Here we develop a non-perturbative local moment approach to the generic asymmetric model, encompassing all energy scales and interaction strengths and leading thereby to a rich description of the problem. We investigate in particular underlying phase boundaries, the critical behaviour of relevant low-energy scales, and single-particle dynamics embodied in the local spectrum. Particular attention is given to the resultant universal scaling behaviour of dynamics close to the transition in both the GFL and LM phases, the scale-free physics characteristic of the quantum critical point itself, and the relation between the two.Comment: 39 pages, 19 figure

    Stroboscopic Research

    Get PDF
    Contains research objectives and reports on one research project

    New results for a photon-photon collider

    Get PDF
    We present new results from studies in progress on physics at a two-photon collider. We report on the sensitivity to top squark parameters of MSSM Higgs boson production in two-photon collisions; Higgs boson decay to two photons; radion production in models of warped extra dimensions; chargino pair production; sensitivity to the trilinear Higgs boson coupling; charged Higgs boson pair production; and we discuss the backgrounds produced by resolved photon-photon interactions.Comment: 17 pages, 15 figure

    Zero-bias conductance in carbon nanotube quantum dots

    Full text link
    We present numerical renormalization group calculations for the zero-bias conductance of quantum dots made from semiconducting carbon nanotubes. These explain and reproduce the thermal evolution of the conductance for different groups of orbitals, as the dot-lead tunnel coupling is varied and the system evolves from correlated Kondo behavior to more weakly correlated regimes. For integer fillings N=1,2,3N=1,2,3 of an SU(4) model, we find universal scaling behavior of the conductance that is distinct from the standard SU(2) universal conductance, and concurs quantitatively with experiment. Our results also agree qualitatively with experimental differential conductance maps.Comment: 4 pages, 5 figure

    Circular 64

    Get PDF
    Treatment of Alaska-produced food products by ionizing radiation may benefit the seafood and agricultural industries and the Alaskan consumer. A feasibility study to evaluate the potential social and economic benefits and risks as well as the costs of using the process in Alaska on Alaskan products is being coordinated by the Institute of Northern Engineering. A research and development project to determine effects on the quality o f Alaskan products could be the next phase in the introduction o f a new food-preservation technique to Alaska
    • …
    corecore