11 research outputs found
Material-specific gap function in the high-temperature superconductors
We present theoretical arguments and experimental support for the idea that
high-Tc superconductivity can occur with s-wave, d-wave, or mixed-wave pairing
in the context of a magnetic mechanism. The size and shape of the gap is
different for different materials. The theoretical arguments are based on the
t-J model as derived from the Hubbard model so that it necessarily includes
three-site terms. We argue that this should be the basic minimal model for
high-Tc systems. We analyze this model starting with the dilute limit which can
be solved exactly, passing then to the Cooper problem which is numerically
tractable, then ending with a mean field approach. It is found that the
relative stability of s-wave and d-wave depends on the size and the shape of
the Fermi surface. We identify three striking trends. First, materials with
large next-nearest-neighbor hopping (such as YBa(2)Cu(3)O(7-x)) are nearly pure
d-wave, whereas nearest-neighbor materials (such as La(2-x)Sr(x)CuO(4)) tend to
be more s-wave-like. Second, low hole doping materials tend to be pure d-wave,
but high hole doping leads to s-wave. Finally, the optimum hole doping level
increases as the next-nearest-neighbor hopping increases. We examine the
experimental evidence and find support for this idea that gap function in the
high-temperature superconductors is material-specific.Comment: 20 pages; requires revtex.sty v3.0, epsf.sty; includes 6 EPS figures;
Postscript version also available at
http://lifshitz.physics.wisc.edu/www/koltenbah/papers/gapfunc2.ps . This
version contains an extensive amount of new work including theoretical
background, an additional mean field treatment with new figures, and a more
thorough experimental surve
Interferometry with Photon-Subtracted Thermal Light
We propose and implement a quantum procedure for enhancing the sensitivity
with which one can determine the phase shift experienced by a weak light beam
possessing thermal statistics in passing through an interferometer. Our
procedure entails subtracting exactly one (which can be generalized to m)
photons from the light field exiting an interferometer containing a
phase-shifting element in one of its arms. As a consequence of the process of
photon subtraction, and somewhat surprisingly, the mean photon number and
signal-to-noise ratio of the resulting light field are thereby increased,
leading to enhanced interferometry. This method can be used to increase
measurement sensitivity in a variety of practical applications, including that
of forming the image of an object illuminated only by weak thermal light
On the derivation of the t-J model: electron spectrum and exchange interactions in narrow energy bands
A derivation of the t-J model of a highly-correlated solid is given starting
from the general many-electron Hamiltonian with account of the
non-orthogonality of atomic wave functions. Asymmetry of the Hubbard subbands
(i.e. of ``electron'' and ``hole''cases) for a nearly half-filled bare band is
demonstrated. The non-orthogonality corrections are shown to lead to occurrence
of indirect antiferromagnetic exchange interaction even in the limit of the
infinite on-site Coulomb repulsion. Consequences of this treatment for the
magnetism formation in narrow energy bands are discussed. Peculiarities of the
case of ``frustrated'' lattices, which contain triangles of nearest neighbors,
are considered.Comment: 4 pages, RevTe
Quantum-enhanced interferometry with weak thermal light
We propose and implement a procedure for enhancing the sensitivity with which one can determine the phase shift experienced by a thermal light beam possessing on average fewer than four photons in passing through an interferometer. Our procedure entails subtracting exactly one (which can be generalized to m) photon from the light field exiting an interferometer containing a phase-shifting element in one of its arms. As a consequence of the process of photon subtraction, the mean photon number and signal-to-noise ratio (SNR) of the resulting light field are increased, leading to an enhancement of the SNR of the interferometric signal for that fraction of the incoming data that leads to photon subtraction
Phonon Localization in One-Dimensional Quasiperiodic Chains
Quasiperiodic long range order is intermediate between spatial periodicity
and disorder, and the excitations in 1D quasiperiodic systems are believed to
be transitional between extended and localized. These ideas are tested with a
numerical analysis of two incommensurate 1D elastic chains: Frenkel-Kontorova
(FK) and Lennard-Jones (LJ). The ground state configurations and the
eigenfrequencies and eigenfunctions for harmonic excitations are determined.
Aubry's "transition by breaking the analyticity" is observed in the ground
state of each model, but the behavior of the excitations is qualitatively
different. Phonon localization is observed for some modes in the LJ chain on
both sides of the transition. The localization phenomenon apparently is
decoupled from the distribution of eigenfrequencies since the spectrum changes
from continuous to Cantor-set-like when the interaction parameters are varied
to cross the analyticity--breaking transition. The eigenfunctions of the FK
chain satisfy the "quasi-Bloch" theorem below the transition, but not above it,
while only a subset of the eigenfunctions of the LJ chain satisfy the theorem.Comment: This is a revised version to appear in Physical Review B; includes
additional and necessary clarifications and comments. 7 pages; requires
revtex.sty v3.0, epsf.sty; includes 6 EPS figures. Postscript version also
available at
http://lifshitz.physics.wisc.edu/www/koltenbah/koltenbah_homepage.htm
Systematics of two-component superconductivity in from microwave measurements of high quality single crystals
Systematic microwave surface impedance measurements of YBCO single crystals
grown in crucibles reveal new properties that are not directly seen
in similar measurements of other YBCO samples. Two key observations obtained
from complex conductivity are: a new normal conductivity peak at around 80K and
additional pairing below 65K. High pressure oxygenation of one of the crystals
still yields the same results ruling out any effect of macroscopic segregation
of O-deficient regions. A single complex order parameter cannot describe these
data, and the results suggest at least two superconducting components.
Comparisons with model calculations done for various decoupled two-component
scenarios (i.e. s+d, d+d) are presented. Systematics of three single crystals
show that the 80K quasiparticle peak is correlated with the normal state
inelastic scattering rate. Close to Tc, the data follow a mean-field behavior.
Overall, our results strongly suggest the presence of multiple pairing
temperature and energy scales in .Comment: 14 pages, 2-column, Revtex, 5 embedded postscript figures, uses
graphicx. Postscript version also available at
http://sagar.physics.neu.edu/preprints.htm
Control of Ge homojunction band offsets via ultrathin GaAs dipole layers
Band offsets of 0.35-0.45 eV are produced at Ge homojunctions by placing a monolayer of As and an adjacent monolayer of Ga between the two Ge bulks. The "Ga-first" and "As-first" growth sequences exhibit band offsets of similar magnitude but opposite sign, consistent with a truly dipolar effect. To our knowledge, this is the first time that intralayer control of band discontinuities is extended to homojunctions, thereby expanding the potential domain of band offset engineering. The offsets were measured with photoemission spectroscopy. The existence, sign, and approximate magnitude of the effect are correctly predicted by a "theoretical alchemy" model
Control of Ge homojunction band offsets via ultrathin Ga\u2013As dipole layers
We have created 0.35-0.45 eV band offsets at Ge homojunctions using Ga-As dipole intralayers, with the Ge valence band edge on the As side of the junction at lower energy. This is, to our knowledge, the first time that intralayer control of band discontinuities is extended to homojunctions, thereby expanding the potential domain of band gap engineering. Because these offsets occur over just a few atomic spacings, they rival heterojunction band edge discontinuities in breadth. The offsets were measured with synchrotron-radiation photoemission spectroscopy. Similar band offset magnitudes occur for both "Ga-first" and "As-first" growth sequences, consistent with a truly dipolar effect. Both cleaved Ge(111) and thick almost-equal-to 50 angstrom Ge films deposited on cleaved Ge(111) were used as substrates, obtaining consistent results. The sign and magnitude of the effect is in agreement with a "theoretical alchemy" model. Experimental evidence of microdiffusion is discussed