11,383 research outputs found

    Photonic measurements of the longitudinal expansion dynamics in Heavy-Ion collisions

    Full text link
    Due to the smallness of the electromagnetic coupling, photons escape from the hot and dense matter created in an heavy-ion collision at all times, in contrast to hadrons which are predominantly emitted in the final freeze-out phase of the evolving system. Thus, the thermal photon yield carries an imprint from the early evolution. We suggest how this fact can be used to gain information about where between the two limiting cases of Bjorken (boost-invariant expansion) and Landau (complete initial stopping and re-expansion) hydrodynamics the actual evolution can be found. We argue that both the rapidity dependence of the photon yield and photonic HBT radii are capable of answering this question.Comment: 10 pages, 3 figure

    A predictive phenomenological tool at small Bjorken-x

    Full text link
    We present the results from global fits of inclusive DIS experimental data using the Balitsky-Kovchegov equation with running coupling.Comment: 5 pages, 2 figures, prepared for the Proceedings of 'Hot Quarks 2010

    Synchronizing Automata on Quasi Eulerian Digraph

    Full text link
    In 1964 \v{C}ern\'{y} conjectured that each nn-state synchronizing automaton posesses a reset word of length at most (n1)2(n-1)^2. From the other side the best known upper bound on the reset length (minimum length of reset words) is cubic in nn. Thus the main problem here is to prove quadratic (in nn) upper bounds. Since 1964, this problem has been solved for few special classes of \sa. One of this result is due to Kari \cite{Ka03} for automata with Eulerian digraphs. In this paper we introduce a new approach to prove quadratic upper bounds and explain it in terms of Markov chains and Perron-Frobenius theories. Using this approach we obtain a quadratic upper bound for a generalization of Eulerian automata.Comment: 8 pages, 1 figur

    Evidence of a Solar Origin for Pressure Balance Structures in the High-Latitude Solar Wind

    Get PDF
    Ulysses observations of the high-latitude solar wind have shown that on time scales of \u3c 1 day, the polar wind is dominated by pressure balance structures (PBSs). Fluctuations of the plasma beta within PBSs appear to be strongly correlated with fluctuations in the helium abundance. The correlation occurs in both the northern and southern hemispheres. In addition, a mechanism is apparently at work in the high-latitude solar wind that dissipates the beta/He correlation over a distance of a few AU. Solar wind composition is established at the base of the corona; thus, the He abundance signature strongly suggests the observed solar wind PBSs are associated with structures low in the solar atmosphere. In particular, high-beta structures appear to originate in locations of enhanced He abundance. We suggest an interpretation of the high-beta portion of PBSs as the solar wind extensions of polar plumes

    Elastic turbulence in curvilinear flows of polymer solutions

    Full text link
    Following our first report (A. Groisman and V. Steinberg, \sl Nature 405\bf 405, 53 (2000)) we present an extended account of experimental observations of elasticity induced turbulence in three different systems: a swirling flow between two plates, a Couette-Taylor (CT) flow between two cylinders, and a flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of width of the region available for flow to radius of curvature of the streamlines. The experiments were carried out with dilute solutions of high molecular weight polyacrylamide in concentrated sugar syrups. High polymer relaxation time and solution viscosity ensured prevalence of non-linear elastic effects over inertial non-linearity, and development of purely elastic instabilities at low Reynolds number (Re) in all three flows. Above the elastic instability threshold, flows in all three systems exhibit features of developed turbulence. Those include: (i)randomly fluctuating fluid motion excited in a broad range of spatial and temporal scales; (ii) significant increase in the rates of momentum and mass transfer (compared to those expected for a steady flow with a smooth velocity profile). Phenomenology, driving mechanisms, and parameter dependence of the elastic turbulence are compared with those of the conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure

    Mixing by polymers: experimental test of decay regime of mixing

    Full text link
    By using high molecular weight fluorescent passive tracers with different diffusion coefficients and by changing the fluid velocity we study dependence of a characteristic mixing length on the Peclet number, PePe, which controls the mixing efficiency. The mixing length is found to be related to PePe by a power law, LmixPe0.26±0.01L_{mix}\propto Pe^{0.26\pm 0.01}, and increases faster than expected for an unbounded chaotic flow. Role of the boundaries in the mixing length abnormal growth is clarified. The experimental findings are in a good quantitative agreement with the recent theoretical predictions.Comment: 4 pages,5 figures. accepted for publication in PR

    Hypertriglyceridaemia‐induced pancreatitis prompted by acute corticosteroid treatment: caution for clinicians

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148397/1/imj14228.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148397/2/imj14228_am.pd

    Elastic turbulence in von Karman swirling flow between two disks

    Full text link
    We discuss the role of elastic stress in the statistical properties of elastic turbulence, realized by the flow of a polymer solution between two disks. The dynamics of the elastic stress are analogous to those of a small scale fast dynamo in magnetohydrodynamics, and to those of the turbulent advection of a passive scalar in the Batchelor regime. Both systems are theoretically studied in literature, and this analogy is exploited to explain the statistical properties, the flow structure, and the scaling observed experimentally. Several features of elastic turbulence are confirmed experimentally and presented in this paper: (i) saturation of the rms of the vorticity and of velocity gradients in the bulk, leading to the saturation of the elastic stress; (ii) large rms of the velocity gradients in the boundary layer, linearly growth with Wi; (iii) skewed PDFs of the injected power, with exponential tails, which indicate intermittency; PDF of the acceleration exhibit well-pronounced exponential tails too; (iv) a new length scale, i.e the thickness of the boundary layer, as measured from the profile of the rms of the velocity gradient, is found to be relevant and much smaller than the vessel size; (v) the scaling of the structure functions of the vorticity, velocity gradients, and injected power is found to be the same as that of a passive scalar advected by an elastic turbulent velocity field.Comment: submitted to Physics of Fluids; 31 pages, 29 figures (resolution reduced to screen quality

    Understanding and Affecting Student Reasoning About Sound Waves

    Get PDF
    Student learning of sound waves can be helped through the creation of group-learning classroom materials whose development and design rely on explicit investigations into student understanding. We describe reasoning in terms of sets of resources, i.e. grouped building blocks of thinking that are commonly used in many different settings. Students in our university physics classes often used sets of resources that were different from the ones we wish them to use. By designing curriculum materials that ask students to think about the physics from a different view, we bring about improvement in student understanding of sound waves. Our curriculum modifications are specific to our own classes, but our description of student learning is more generally useful for teachers. We describe how students can use multiple sets of resources in their thinking, and raise questions that should be considered by both instructors and researchers.Comment: 23 pages, 4 figures, 3 tables, 28 references, 7 notes. Accepted for publication in the International Journal of Science Educatio
    corecore