783 research outputs found

    The Transition from Heavy Fermion to Mixed Valence in Ce1-xYxAl3: A Quantitative Comparison with the Anderson Impurity Model

    Full text link
    We present a neutron scattering investigation of Ce1-xYxAl3 as a function of chemical pressure, which induces a transition from heavy-fermion behavior in CeAl3 (TK=5 K) to a mixed-valence state at x=0.5 (TK=150 K). The crossover can be modeled accurately on an absolute intensity scale by an increase in the k-f hybridization, Vkf, within the Anderson impurity model. Surprisingly, the principal effect of the increasing Vkf is not to broaden the low-energy components of the dynamic magnetic susceptibility but to transfer spectral weight to high energy.Comment: 4 pages, 5 figure

    Physical properties of noncentrosymmetric superconductor LaIrSi3: A {\mu}SR study

    Full text link
    The results of heat capacity C_p(T, H) and electrical resistivity \rho(T,H) measurements down to 0.35 K as well as muon spin relaxation and rotation (\muSR) measurements on a noncentrosymmetric superconductor LaIrSi3 are presented. Powder neutron diffraction confirmed the reported noncentrosymmetric body-centered tetragonal BaNiSn3-type structure (space group I4\,mm) of LaIrSi3. The bulk superconductivity is observed below T_c = 0.72(1) K. The intrinsic \Delta C_e/\gamma_n T_c = 1.09(3) is significantly smaller than the BCS value of 1.43, and this reduction is accounted by the \alpha-model of BCS superconductivity. The analysis of the superconducting state C_e(T) data by the single-band \alpha-model indicates a moderately anisotropic order parameter with the s-wave gap \Delta(0)/k_B T_c = 1.54(2) which is lower than the BCS value of 1.764. Our estimates of various normal and superconducting state parameters indicate a weakly coupled electron-phonon driven type-I s-wave superconductivity in LaIrSi3. The \muSR results also confirm the conventional type-I superconductivity in LaIrSi3 with a preserved time reversal symmetry and hence a singlet pairing superconducting ground state.Comment: 11 pages, 8 figures, 2 table

    Electronic structure of the muonium center as a shallow donor in ZnO

    Full text link
    The electronic structure and the location of muonium centers (Mu) in single-crystalline ZnO were determined for the first time. Two species of Mu centers with extremely small hyperfine parameters have been observed below 40 K. Both Mu centers have an axial-symmetric hyperfine structure along with a [0001] axis, indicating that they are located at the AB_{O,//} and BC_{//} sites. It is inferred from their small ionization energy (~6 meV and 50 meV) and hyperfine parameters (~10^{-4} times the vacuum value) that these centers behave as shallow donors, strongly suggesting that hydrogen is one of the primary origins of n type conductivity in as-grown ZnO.Comment: 4 pages, 4 figures, submitted to PR

    Non-Fermi-liquid behavior in Ce(Ru1−x_{1-x}Fex_x)2_2Ge2_2: cause and effect

    Full text link
    We present inelastic neutron scattering measurements on the intermetallic compounds Ce(Ru1−x_{1-x}Fex_x)2_2Ge2_2 (xx=0.65, 0.76 and 0.87). These compounds represent samples in a magnetically ordered phase, at a quantum critical point and in the heavy-fermion phase, respectively. We show that at high temperatures the three compositions have the identical response of a local moment system. However, at low temperatures the spin fluctuations in the critical composition are given by non-Fermi-liquid dynamics, while the spin fluctuations in the heavy fermion system show a simple exponential decay in time. In both compositions, the lifetime of the fluctuations is determined solely by the distance to the quantum critical point. We discuss the implications of these observations regarding the possible origins of non-Fermi-liquid behavior in this system.Comment: 4 figures, submitted to PR

    Direct observation of non-local effects in a superconductor

    Full text link
    We have used the technique of low energy muon spin rotation to measure the local magnetic field profile B(z) beneath the surface of a lead film maintained in the Meissner state (z depth from the surface, z <= 200 nm). The data unambiguously show that B(z) clearly deviates from an exponential law and represent the first direct, model independent proof for a non-local response in a superconductor.Comment: 5 pages, 3 figure

    Crystal-fields in YbInNi4 determined with magnetic form factor and inelastic neutron scattering

    Full text link
    The magnetic form factor of YbInNi4 has been determined via the flipping ratios R with polarized neutron diffraction and the scattering function S(Q,w) was measured in an inelastic neutron scattering experiment. Both experiments were performed with the aim to determine the crystal-field scheme. The magnetic form factor clearly excludes the possibility of a \Gamma7 doublet as the ground state. The inelastic neutron data exhibit two, almost equally strong peaks at 3.2 meV and 4.4 meV which points, in agreement with earlier neutron data, towards a \Gamma8 quartet ground state. Further possibilities like a quasi-quartet ground state are discussed.Comment: 7 pages, 5 figures, 2 tables, submitted to PR

    Penetration Depth Measurements in MgB_2: Evidence for Unconventional Superconductivity

    Full text link
    We have measured the magnetic penetration depth of the recently discovered binary superconductor MgB_2 using muon spin rotation and low field acac-susceptibility. From the damping of the muon precession signal we find the penetration depth at zero temperature is about 85nm. The low temperature penetration depth shows a quadratic temperature dependence, indicating the presence of nodes in the superconducting energy gap.Comment: 4 pages 3 figure

    ‘Ethnic group’, the state and the politics of representation

    Get PDF
    The assertion, even if only by implication, that ‘ethnic group’ categories represent ‘real’ tangible entities, indeed identities, is commonplace not only in the realms of political and policy discourse but also amongst contemporary social scientists. This paper, following Brubaker (2002), questions this position in a number of key respects: of these three issues will dominate the discussion that follows. First, there is an interrogation of the proposition that those to whom the categories/labels refer constitute sociologically meaningful ‘groups’ as distinct from (mere) human collectivities. Secondly, there is the question of how these categories emerge, i.e. exactly what series of events, negotiations and contestations lie behind their construction and social acceptance. Thirdly, and as a corollary to the latter point, we explore the process of reification that leads to these categories being seen to represent ‘real things in the world’ (ibid.)
    • 

    corecore