220 research outputs found

    Coreless Terrestrial Exoplanets

    Full text link
    Differentiation in terrestrial planets is expected to include the formation of a metallic iron core. We predict the existence of terrestrial planets that have differentiated but have no metallic core--planets that are effectively a giant silicate mantle. We discuss two paths to forming a coreless terrestrial planet, whereby the oxidation state during planetary accretion and solidification will determine the size or existence of any metallic core. Under this hypothesis, any metallic iron in the bulk accreting material is oxidized by water, binding the iron in the form of iron oxide into the silicate minerals of the planetary mantle. The existence of such silicate planets has consequences for interpreting the compositions and interior density structures of exoplanets based on their mass and radius measurements.Comment: ApJ, in press. 22 pages, 5 figure

    Polyhedral units and network connectivity in calcium aluminosilicate glasses from high-energy x-ray diffraction

    Full text link
    Structure factors for Cax/2AlxSi1-xO2 glasses (x=0,0.25,0.5,0.67) extended to a wave vector of magnitude Q= 40 1/A have been obtained by high-energy x-ray diffraction. For the first time, it is possible to resolve the contributions of Si-O, Al-O and Ca-O coordination polyhedra to the experimental atomic pair distribution functions (PDF). It has been found that both Si and Al are four-fold coordinated and so participate in a continuous tetrahedral network at low values of x. The number of network breaking defects in the form of non-bridging oxygens (NBO's) increases slowly with x until x=0.5 (NBO's ~ 10% at x=0.5). By x=0.67 the network breaking defects become significant as evidenced by the significant drop in the average coordination number of Si. By contrast, Al-O tetrahedra remain free of NBO's and fully integrated in the Al/Si-O network for all values of x. Calcium maintains a rather uniform coordination sphere of approximately 5 oxygen atoms for all values of x. The results suggest that not only Si/Al-O tetrahedra but Ca-O polyhedra, too, play a role in determining the glassy structure

    Edge-to-site reduction of Bethe-Peierls approximation for nearest neighbor exclusion cubic lattice particle systems and thermodynamic modeling of liquid silicates

    Get PDF
    We study an interacting particle system on the simple cubic lattice satisfying the nearest neighbor exclusion (NNE) which forbids any two nearest sites to be simultaneously occupied. Under the constraint, we develop an edge-to-site reduction of the Bethe-Peierls entropy approximation of the cluster variation method. The resulting NNE-corrected Bragg-Williams approximation is applied to statistical mechanical modeling of a liquid silicate formed by silica and a univalent network modifier, for which we derive the molar Gibbs energy of mixing and enthalpy of mixing and compare the predictions with available thermodynamic data. (c) 2007 American Institute of Physics

    C–O–H–S fluids and granitic magma : how S partitions and modifies CO2 concentrations of fluid-saturated felsic melt at 200 MPa

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 162 (2011): 849-865, doi:10.1007/s00410-011-0628-1.Hydrothermal volatile-solubility and partitioning experiments were conducted with fluid-saturated haplogranitic melt, H2O, CO2, and S in an internally heated pressure vessel at 900°C and 200 MPa; three additional experiments were conducted with iron-bearing melt. The run-product glasses were analyzed by electron microprobe, FTIR, and SIMS; and they contain ≀ 0.12 wt% S, ≀ 0.097 wt.% CO2, and ≀ 6.4 wt.% H2O. Apparent values of log ƒO2 for the experiments at run conditions were computed from the [(S6+)/(S6++S2-)] ratio of the glasses, and they range from NNO-0.4 to NNO+1.4. The C-O-H-S fluid compositions at run conditions were computed by mass balance, and they contained 22-99 mol% H2O, 0-78 mol% CO2, 0-12 mol% S, and < 3 wt% alkalis. Eight S-free experiments were conducted to determine the H2O and CO2 concentrations of melt and fluid compositions and to compare them with prior experimental results for C-O-H fluid-saturated rhyolite melt, and the agreement is excellent. Sulfur partitions very strongly in favor of fluid in all experiments, and the presence of S modifies the fluid compositions, and hence, the CO2 solubilities in coexisting felsic melt. The square of the mole fraction of H2O in melt increases in a linear fashion, from 0.05-0.25, with the H2O concentration of the fluid. The mole fraction of CO2 in melt increases linearly, from 0.0003-0.0045, with the CO2 concentration of C-O-H-S fluids. Interestingly, the CO2 concentration in melts, involving relatively reduced runs (log ƒO2 ≀ NNO+0.3) that contain 2.5-7 mol% S in the fluid, decreases significantly with increasing S in the system. This response to the changing fluid composition causes the H2O and CO2 solubility curve for C-O-H-S fluid-saturated haplogranitic melts at 200 MPa to shift to values near that modeled for C-O-H fluid-saturated, S-free rhyolite melt at 150 MPa. The concentration of S in haplogranitic melt increases in a linear fashion with increasing S in C-O-H-S fluids, but these data show significant dispersion that likely reflects the strong influence of ƒO2 on S speciation in melt and fluid. Importantly, the partitioning of S between fluid and melt does not vary with the (H2O/H2O+CO2) ratio of the fluid. The fluid-melt partition coefficients for H2O, CO2, and S and the atomic (C/S) ratios of the run-product fluids are virtually identical to thermodynamic constraints on volatile partitioning and the H, S, and C contents of pre-eruptive magmatic fluids and volcanic gases for subduction-related magmatic systems thus confirming our experiments are relevant to natural eruptive systems.This research was supported in part by National Science Foundation awards EAR 0308866 and EAR-0836741 to J.D.W

    Thermodynamic Assessment of the CaO–Al2O3–SiO2 System

    Get PDF
    The CaO–Al2O3–SiO2 system has been assessed with the CALPHAD technique, based on recent assessments of its binary systems. A new species AlO2−1 was introduced for modeling liquid Al2O3. The ternary liquid phase was described using the ionic two-sublattice model as. The available experimental data were critically examined, and a self-consistent set of thermodynamic descriptions was obtained. Various phase diagrams and property diagrams, including isothermal sections, isoactivity lines, and a projection of the liquidus surface, are presented. Information on viscosity seems to support the use of the AlO2−1 species

    Particular H 2 O dissolution mechanism in iron‐rich melt: Application to martian basaltic melt genesis

    No full text
    International audience13 Martian basalts are different from Earth by their iron-rich abundance with 18 wt % FeO tot in 14 average for Mars upper crust. The H 2 O behavior in this atypical melt composition is not well 15 understood. We have synthesized H 2 O-bearing martian basaltic glasses (> 15.5 wt % FeO ini) 16 under high pressures (0.5-1.5 GPa) and temperatures (> 1500 °C) conditions. We used Raman 17 spectra to investigate the effect of H 2 O as well as the high FeO tot content on the molecular 18 structure of Fe-rich glasses. 19 Increasing Fe content appears to inhibit the dissolution of H 2 O in the melt. We observed the 20 formation of Free OH groups at 3660 cm-1 at relatively low H 2 O content (1 wt %) in Fe-rich 21 glasses whereas it only appears at high H 2 O content (~6.5 wt %) for Fe-poor glasses. We 22 suggest that the Free OH are bonded to Fe 2+ cations in the melt forming isolating clusters of 23 Fe(OH)2. Such configurations is suspected to induce an increase in the melt polymerization; o r P e e r R e v i e w 2 24 however, we did not clearly observe it and further investigation is requested. The major 25 implication of these results is the possibility to form an immiscible hydrated Fe-rich phase that 26 will favor formation of Fe-oxides at Mars surface
    • 

    corecore