310 research outputs found

    Bogomol'nyi Decomposition for Vesicles of Arbitrary Genus

    Full text link
    We apply the Bogomol'nyi technique, which is usually invoked in the study of solitons or models with topological invariants, to the case of elastic energy of vesicles. We show that spontaneous bending contribution caused by any deformation from metastable bending shapes falls in two distinct topological sets: shapes of spherical topology and shapes of non-spherical topology experience respectively a deviatoric bending contribution a la Fischer and a mean curvature bending contribution a la Helfrich. In other words, topology may be considered to describe bending phenomena. Besides, we calculate the bending energy per genus and the bending closure energy regardless of the shape of the vesicle. As an illustration we briefly consider geometrical frustration phenomena experienced by magnetically coated vesicles.Comment: 8 pages, 1 figure; LaTeX2e + IOPar

    Existence of immersed spheres minimizing curvature functionals in compact 3-manifolds

    Full text link
    We study curvature functionals for immersed 2-spheres in a compact, three-dimensional Riemannian manifold M. Under the assumption that the sectional curvature of M is strictly positive, we prove the existence of a smoothly immersed sphere minimizing the L^{2} integral of the second fundamental form. Assuming instead that the sectional curvature is less than or equal to 2, and that there exists a point in M with scalar curvature bigger than 6, we obtain a smooth 2-sphere minimizing the integral of 1/4|H|^{2} +1, where H is the mean curvature vector

    Spinor representation of surfaces and complex stresses on membranes and interfaces

    Full text link
    Variational principles are developed within the framework of a spinor representation of the surface geometry to examine the equilibrium properties of a membrane or interface. This is a far-reaching generalization of the Weierstrass-Enneper representation for minimal surfaces, introduced by mathematicians in the nineties, permitting the relaxation of the vanishing mean curvature constraint. In this representation the surface geometry is described by a spinor field, satisfying a two-dimensional Dirac equation, coupled through a potential associated with the mean curvature. As an application, the mesoscopic model for a fluid membrane as a surface described by the Canham-Helfrich energy quadratic in the mean curvature is examined. An explicit construction is provided of the conserved complex-valued stress tensor characterizing this surface.Comment: 17 page

    On CP1 and CP2 maps and Weierstrass representations for surfaces immersed into multi-dimensional Euclidean spaces

    Full text link
    An extension of the classic Enneper-Weierstrass representation for conformally parametrised surfaces in multi-dimensional spaces is presented. This is based on low dimensional CP^1 and CP^2 sigma models which allow the study of the constant mean curvature (CMC) surfaces immersed into Euclidean 3- and 8-dimensional spaces, respectively. Relations of Weierstrass type systems to the equations of these sigma models are established. In particular, it is demonstrated that the generalised Weierstrass representation can admit different CMC-surfaces in R^3 which have globally the same Gauss map. A new procedure for constructing CMC-surfaces in R^n is presented and illustrated in some explicit examples.Comment: arxiv version is already officia

    X-ray time variability across the atoll source states of 4U 1636--53

    Full text link
    We have studied the rapid X-ray time variability in 149 pointed observations with the \textit{Rossi X-ray Timing Explorer} (RXTE)'s Proportional Counter Array of the atoll source 4U~1636--53 in the banana state and, for the first time with RXTE, in the island state. We compare the frequencies of the variability components of 4U~1636--53 with those in other atoll and Z-sources and find that 4U~1636--53 follows the universal scheme of correlations previously found for other atoll sources at (sometimes much) lower luminosities. Our results on the hectohertz QPO suggest that the mechanism that sets its frequency differs from that for the other components, while the amplitude setting mechanism is common. A previously proposed interpretation of the narrow low-frequency QPO frequencies in different sources in terms of harmonic mode switching is not supported by our data, nor by some previous data on other sources and the frequency range that this QPO covers is found not to be related to spin, angular momentum or luminosity.Comment: 16 pages, 13 figures, accepted for publication in Ap

    Conformally invariant bending energy for hypersurfaces

    Full text link
    The most general conformally invariant bending energy of a closed four-dimensional surface, polynomial in the extrinsic curvature and its derivatives, is constructed. This invariance manifests itself as a set of constraints on the corresponding stress tensor. If the topology is fixed, there are three independent polynomial invariants: two of these are the straighforward quartic analogues of the quadratic Willmore energy for a two-dimensional surface; one is intrinsic (the Weyl invariant), the other extrinsic; the third invariant involves a sum of a quadratic in gradients of the extrinsic curvature -- which is not itself invariant -- and a quartic in the curvature. The four-dimensional energy quadratic in extrinsic curvature plays a central role in this construction.Comment: 16 page

    Surfaces immersed in Lie algebras associated with elliptic integrals

    Full text link
    The main aim of this paper is to study soliton surfaces immersed in Lie algebras associated with ordinary differential equations (ODE's) for elliptic functions. That is, given a linear spectral problem for such an ODE in matrix Lax representation, we search for the most general solution of the wave function which satisfies the linear spectral problem. These solutions allow for the explicit construction of soliton surfaces by the Fokas-Gel'fand formula for immersion, as formulated in (Grundland and Post 2011) which is based on the formalism of generalized vector fields and their prolongation structures. The problem has been reduced to examining three types of symmetries, namely, a conformal symmetry in the spectral parameter (known as the Sym-Tafel formula), gauge transformations of the wave function and generalized symmetries of the associated integrable ODE. The paper contains a detailed explanation of the immersion theory of surfaces in Lie algebras in connection with ODE's as well as an exposition of the main tools used to study their geometric characteristics. Several examples of the Jacobian and P-Weierstrass elliptic functions are included as illustrations of the theoretical results.Comment: 22 pages, 3 sets of figures. Keywords: Generalized symmetries, integrable models, surfaces immersed in Lie algebra

    A scalar invariant and the local geometry of a class of static spacetimes

    Full text link
    The scalar invariant, I, constructed from the "square" of the first covariant derivative of the curvature tensor is used to probe the local geometry of static spacetimes which are also Einstein spaces. We obtain an explicit form of this invariant, exploiting the local warp-product structure of a 4-dimensional static spacetime,  (3)Σ×fR~^{(3)}\Sigma \times_{f} \reals, where (3)Σ^{(3)}\Sigma is the Riemannian hypersurface orthogonal to a timelike Killing vector field with norm given by a positive function, ff on (3)Σ^{(3)}\Sigma . For a static spacetime which is an Einstein space, it is shown that the locally measurable scalar, I, contains a term which vanishes if and only if (3)Σ^{(3)}\Sigma is conformally flat; also, the vanishing of this term implies (a)  (3)Σ~^{(3)}\Sigma is locally foliated by level surfaces of ff, (2)S^{(2)}S, which are totally umbilic spaces of constant curvature, and (b) (3)Σ^{(3)}\Sigma is locally a warp-product space. Futhermore, if (3)Σ^{(3)}\Sigma is conformally flat it follows that every non-trivial static solution of the vacuum Einstein equation with a cosmological constant, is either Nariai-type or Kottler-type - the classes of spacetimes relevant to quantum aspects of gravity.Comment: LaTeX, 13 pages, JHEP3.cls; The paper is completely rewritten with a new title and introduction as well as additional results and reference

    Index-free Heat Kernel Coefficients

    Full text link
    Using index-free notation, we present the diagonal values of the first five heat kernel coefficients associated with a general Laplace-type operator on a compact Riemannian space without boundary. The fifth coefficient appears here for the first time. For a flat space with a gauge connection, the sixth coefficient is given too. Also provided are the leading terms for any coefficient, both in ascending and descending powers of the Yang-Mills and Riemann curvatures, to the same order as required for the fourth coefficient. These results are obtained by directly solving the relevant recursion relations, working in Fock-Schwinger gauge and Riemann normal coordinates. Our procedure is thus noncovariant, but we show that for any coefficient the `gauged' respectively `curved' version is found from the corresponding `non-gauged' respectively `flat' coefficient by making some simple covariant substitutions. These substitutions being understood, the coefficients retain their `flat' form and size. In this sense the fifth and sixth coefficient have only 26 and 75 terms respectively, allowing us to write them down. Using index-free notation also clarifies the general structure of the heat kernel coefficients. In particular, in flat space we find that from the fifth coefficient onward, certain scalars are absent. This may be relevant for the anomalies of quantum field theories in ten or more dimensions.Comment: 38 pages, LaTe

    Differential systems associated with tableaux over Lie algebras

    Full text link
    We give an account of the construction of exterior differential systems based on the notion of tableaux over Lie algebras as developed in [Comm. Anal. Geom 14 (2006), 475-496; math.DG/0412169]. The definition of a tableau over a Lie algebra is revisited and extended in the light of the formalism of the Spencer cohomology; the question of involutiveness for the associated systems and their prolongations is addressed; examples are discussed.Comment: 16 pages; to appear in: "Symmetries and Overdetermined Systems of Partial Differential Equations" (M. Eastwood and W. Miller, Jr., eds.), IMA Volumes in Mathematics and Its Applications, Springer-Verlag, New Yor
    • 

    corecore