6,765 research outputs found

    Effects of momentum-dependent nuclear potential on two-nucleon correlation functions and light cluster production in intermediate energy heavy-ion collisions

    Get PDF
    Using an isospin- and momentum-dependent transport model, we study the effects due to the momentum dependence of isoscalar nuclear potential as well as that of symmetry potential on two-nucleon correlation functions and light cluster production in intermediate energy heavy-ion collisions induced by neutron-rich nuclei. It is found that both observables are affected significantly by the momentum dependence of nuclear potential, leading to a reduction of their sensitivity to the stiffness of nuclear symmetry energy. However, the t/3^{3}He ratio remains a sensitive probe of the density dependence of nuclear symmetry energy.Comment: 20 pages, 11 figure

    High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter

    Full text link
    Using the relativistic impulse approximation with empirical NN scattering amplitude and the nuclear scalar and vector densities from the relativistic mean-field theory, we evaluate the Dirac optical potential for neutrons and protons in asymmetric nuclear matter. From the resulting Schr\"{o}% dinger-equivalent potential, the high energy behavior of the nuclear symmetry potential is studied. We find that the symmetry potential at fixed baryon density is essentially constant once the nucleon kinetic energy is greater than about 500 MeV. Moreover, for such high energy nucleon, the symmetry potential is slightly negative below a baryon density of about % \rho =0.22 fm3^{-3} and then increases almost linearly to positive values at high densities. Our results thus provide an important constraint on the energy and density dependence of nuclear symmetry potential in asymmetric nuclear matter.Comment: 6 pages, 5 figures, revised version, to appear in PR

    Quantifying the Effect of Non-Larmor Motion of Electrons on the Pressure Tensor

    Get PDF
    In space plasma, various effects of magnetic reconnection and turbulence cause the electron motion to significantly deviate from their Larmor orbits. Collectively these orbits affect the electron velocity distribution function and lead to the appearance of the "non-gyrotropic" elements in the pressure tensor. Quantification of this effect has important applications in space and laboratory plasma, one of which is tracing the electron diffusion region (EDR) of magnetic reconnection in space observations. Three different measures of agyrotropy of pressure tensor have previously been proposed, namely, AeA\varnothing_e, DngD_{ng} and QQ. The multitude of contradictory measures has caused confusion within the community. We revisit the problem by considering the basic properties an agyrotropy measure should have. We show that AeA\varnothing_e, DngD_{ng} and QQ are all defined based on the sum of the principle minors (i.e. the rotation invariant I2I_2) of the pressure tensor. We discuss in detail the problems of I2I_2-based measures and explain why they may produce ambiguous and biased results. We introduce a new measure AGAG constructed based on the determinant of the pressure tensor (i.e. the rotation invariant I3I_3) which does not suffer from the problems of I2I_2-based measures. We compare AGAG with other measures in 2 and 3-dimension particle-in-cell magnetic reconnection simulations, and show that AGAG can effectively trace the EDR of reconnection in both Harris and force-free current sheets. On the other hand, AeA\varnothing_e does not show prominent peaks in the EDR and part of the separatrix in the force-free reconnection simulations, demonstrating that AeA\varnothing_e does not measure all the non-gyrotropic effects in this case, and is not suitable for studying magnetic reconnection in more general situations other than Harris sheet reconnection.Comment: accepted by Phys. of Plasm

    Streda-like formula in spin Hall effect

    Full text link
    A generalized Streda formula is derived for the spin transport in spin-orbit coupled systems. As compared with the original Streda formula for charge transport, there is an extra contribution of the spin Hall conductance whenever the spin is not conserved. For recently studied systems with quantum spin Hall effect in which the z-component spin is conserved, this extra contribution vanishes and the quantized value of spin Hall conductivity can be reproduced in the present approach. However, as spin is not conserved in general, this extra contribution can not be neglected, and the quantization is not exact.Comment: 4 pages, no figur

    Metal-Oxo Photo-oxidants, Photochemistry and Photophysics of trans-[Os^(VI)(tmc)(O)_2]^(2+)(tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetra-azacyclotetradecane) and trans-[Os^(VI)(CN)_4(O)_2]^(2-)

    Get PDF
    trans-[Os^(VI)(tmc)(O)_2]^(2+)(tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetra-azacyclotetradecane) and trans-[Os^(VI)(CN)_4(O)_2]^(2-) are emissive in the solid state and in fluid solutions at room temperature (τ~ 1.0–1.5 µs); the (^3)E_g state of trans-[Os^(VI)(tmc)(O)_2]^(2+) is a powerful one-electron oxidant {[Os^(VI)(O)_2]^(2+) + e^– → [Os^V (O)_2]+, E^0_f > 2.0 V vs. normal hydrogen electrode} in aqueous solution, reacting with PPh3 and ((PhCH_2)_2)S to give O=PPh_3 and ((PhCH_2)_2)S=O, respectively

    Quantification and Classification of Corn and Sunflower Oils as Adulterants in Olive Oil Using Chemometrics and FTIR Spectra

    Get PDF
    Commercially, extra virgin olive oil (EVOO) is subjected to be adulterated with low-price oils having similar color to EVOO. Fourier transform infrared (FTIR) spectroscopy combined with chemometrics has been successfully used for classification and quantification of corn (CO) and sunflower oils (SFOs) in EVOO sets. The combined frequency regions of 3027–3000, 1076–860, and 790–698 cm−1 were used for classification and quantification of CO in EVOO; meanwhile, SFO was analyzed using frequency regions of 3025–3000 and 1400–985 cm−1. Discriminant analysis can make classification of pure EVOO and EVOO adulterated with CO and SFO with no misclassification reported. The presence of CO in EVOO was determined with the aid of partial least square calibration using FTIR normal spectra. The calibration and validation errors obtained in CO's quantification are 0.404 and 1.13%, respectively. Meanwhile, the first derivative FTIR spectra and PLS calibration model were preferred for quantification of SFO in EVOO with high coefficient of determination (R2) and low errors, either in calibration or in validation sample sets
    corecore