18,343 research outputs found

    A Hypergeometric Mean Value

    Get PDF
    Generalization of hypergeometric mean value from hypergeometric function without loss of homogeneity - derivation and properties of hypergeometric mean valu

    Numerical computation of real or complex elliptic integrals

    Full text link
    Algorithms for numerical computation of symmetric elliptic integrals of all three kinds are improved in several ways and extended to complex values of the variables (with some restrictions in the case of the integral of the third kind). Numerical check values, consistency checks, and relations to Legendre's integrals and Bulirsch's integrals are included

    Effects of movements in equities prices on M2 demand

    Get PDF
    Large swings in stock prices are sometimes associated with a redirection of household savings flows. Such changes can lead to transitory increases in M2 as investors temporarily “park” funds in depository assets while they determine the funds’ ultimate destination. The authors find that, although stock price changes are statistically significant as an explanation for M2 growth, they do not account for much of M2’s recent strength.Stock - Prices ; Demand for money

    The fourier series of gegenbauer's function

    Get PDF
    Theoretical analysis of Fourier series of Gegenbauer function - methods for integration of Gegenbauer function and Fourier coefficient

    Quantum Monte Carlo calculations of excited states in A = 6--8 nuclei

    Full text link
    A variational Monte Carlo method is used to generate sets of orthogonal trial functions, Psi_T(J^pi,T), for given quantum numbers in various light p-shell nuclei. These Psi_T are then used as input to Green's function Monte Carlo calculations of first, second, and higher excited (J^pi,T) states. Realistic two- and three-nucleon interactions are used. We find that if the physical excited state is reasonably narrow, the GFMC energy converges to a stable result. With the combined Argonne v_18 two-nucleon and Illinois-2 three-nucleon interactions, the results for many second and higher states in A = 6--8 nuclei are close to the experimental values.Comment: Revised version with minor changes as accepted by Phys. Rev. C. 11 page

    Tensor Forces and the Ground-State Structure of Nuclei

    Get PDF
    Two-nucleon momentum distributions are calculated for the ground states of nuclei with mass number A8A\leq 8, using variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of npnp pairs is found to be much larger than that of pppp pairs for values of the relative momentum in the range (300--600) MeV/c and vanishing total momentum. This order of magnitude difference is seen in all nuclei considered and has a universal character originating from the tensor components present in any realistic nucleon-nucleon potential. The correlations induced by the tensor force strongly influence the structure of npnp pairs, which are predominantly in deuteron-like states, while they are ineffective for pppp pairs, which are mostly in 1^1S0_0 states. These features should be easily observable in two-nucleon knock-out processes, such as A(e,enp)A(e,e^\prime np) and A(e,epp)A(e,e^\prime pp).Comment: 4 pages including 3 figure

    Dependence of two-nucleon momentum densities on total pair momentum

    Full text link
    Two-nucleon momentum distributions are calculated for the ground states of 3He and 4He as a function of the nucleons' relative and total momenta. We use variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of pp pairs is found to be much smaller than that of pn pairs for values of the relative momentum in the range (300--500) MeV/c and vanishing total momentum. However, as the total momentum increases to 400 MeV/c, the ratio of pp to pn pairs in this relative momentum range grows and approaches the limit 1/2 for 3He and 1/4 for 4He, corresponding to the ratio of pp to pn pairs in these nuclei. This behavior should be easily observable in two-nucleon knock-out processes, such as A(e,e'pN).Comment: 3 pages, 3 figure

    Quantum Monte Carlo Calculations of A6A\leq6 Nuclei

    Full text link
    The energies of 3H^{3}H, 3He^{3}He, and 4He^{4}He ground states, the 32{\frac{3}{2}}^{-} and 12{\frac{1}{2}}^{-} scattering states of 5He^{5}He, the ground states of 6He^{6}He, 6Li^{6}Li, and 6Be^{6}Be and the 3+3^{+} and 0+0^{+} excited states of 6Li^{6}Li have been accurately calculated with the Green's function Monte Carlo method using realistic models of two- and three-nucleon interactions. The splitting of the A=3A=3 isospin T=12T=\frac{1}{2} and A=6A=6 isospin T=1T=1, Jπ=0+J^{\pi} = 0^{+} multiplets is also studied. The observed energies and radii are generally well reproduced, however, some definite differences between theory and experiment can be identified.Comment: 12 pages, 1 figur
    corecore