224 research outputs found
Localization, Coulomb interactions and electrical heating in single-wall carbon nanotubes/polymer composites
Low field and high field transport properties of carbon nanotubes/polymer
composites are investigated for different tube fractions. Above the percolation
threshold f_c=0.33%, transport is due to hopping of localized charge carriers
with a localization length xi=10-30 nm. Coulomb interactions associated with a
soft gap Delta_CG=2.5 meV are present at low temperature close to f_c. We argue
that it originates from the Coulomb charging energy effect which is partly
screened by adjacent bundles. The high field conductivity is described within
an electrical heating scheme. All the results suggest that using composites
close to the percolation threshold may be a way to access intrinsic properties
of the nanotubes by experiments at a macroscopic scale.Comment: 4 pages, 5 figures, Submitted to Phys. Rev.
Minimum Conductivity and Evidence for Phase Transitions in Ultra-clean Bilayer Graphene
Bilayer graphene (BLG) at the charge neutrality point (CNP) is strongly
susceptible to electronic interactions, and expected to undergo a phase
transition into a state with spontaneous broken symmetries. By systematically
investigating a large number of singly- and doubly-gated bilayer graphene (BLG)
devices, we show that an insulating state appears only in devices with high
mobility and low extrinsic doping. This insulating state has an associated
transition temperature Tc~5K and an energy gap of ~3 meV, thus strongly
suggesting a gapped broken symmetry state that is destroyed by very weak
disorder. The transition to the intrinsic broken symmetry state can be tuned by
disorder, out-of-plane electric field, or carrier density
Bulk and boundary zero-bias anomaly in multi-wall carbon nanotubes
We compute the tunneling density of states of doped multi-wall nanotubes
including disorder and electron-electron interactions. A non-conventional
Coulomb blockade reflecting nonperturbative Altshuler-Aronov-Lee power-law
zero-bias anomalies is found, in accordance with recent experimental results.
The presence of a boundary implies a universal doubling of the boundary
exponent in the diffusive limit.Comment: 4 pages, to appear in PRL (revised version
Paraconductivity in Carbon Nanotubes
We report the calculation of paraconductivity in carbon nanotubes above the
superconducting transition temperature. The complex behavior of
paraconductivity depending upon the tube radius, temperature and magnetic field
strength is analyzed. The results are qualitatively compared with recent
experimental observations in carbon nanotubes of an inherent transition to the
superconducting state and pronounced thermodynamic fluctuations above .
The application of our results to single-wall and multi-wall carbon nanotubes
as well as ropes of nanotubes is discussed.Comment: 7 pages, 1 figur
Quantized Adiabatic Charge Transport in a Carbon Nanotube
The coupling of a metallic Carbon nanotube to a surface acoustic wave (SAW)
is proposed as a vehicle to realize quantized adiabatic charge transport in a
Luttinger liquid system. We demonstrate that electron backscattering by a
periodic SAW potential, which results in miniband formation, can be achieved at
energies near the Fermi level. Electron interaction, treated in a Luttinger
liquid framework, is shown to enhance minigaps and thereby improve current
quantization. Quantized SAW induced current, as a function of electron density,
changes sign at half-filling.Comment: 5 pages, 2 figure
Quantum Interference Effects in Electronic Transport through Nanotube Contacts
Quantum interference has dramatic effects on electronic transport through
nanotube contacts. In optimal configuration the intertube conductance can
approach that of a perfect nanotube (). The maximum conductance
increases rapidly with the contact length up to 10 nm, beyond which it exhibits
long wavelength oscillations. This is attributed to the resonant cavity-like
interference phenomena in the contact region. For two concentric nanotubes
symmetry breaking reduces the maximum intertube conductance from to
. The phenomena discussed here can serve as a foundation for building
nanotube electronic circuits and high speed nanoscale electromechanical
devices
Spin-orbit coupling in interacting quasi-one-dimensional electron systems
We present a new model for the study of spin-orbit coupling in interacting
quasi-one-dimensional systems and solve it exactly to find the spectral
properties of such systems. We show that the combination of spin-orbit coupling
and electron-electron interactions results in: the replacement of separate spin
and charge excitations with two new kinds of bosonic mixed-spin-charge
excitation, and a characteristic modification of the spectral function and
single-particle density of states. Our results show how manipulation of the
spin-orbit coupling, with external electric fields, can be used for the
experimental determination of microscopic interaction parameters in quantum
wires.Comment: 5 pages including 4 figures; RevTeX; to appear in Phys.Rev.Let
Shot noise of a quantum dot with non-Fermi liquid correlations
The shot noise of a one-dimensional wire interrupted by two barriers shows
interesting features related to the interplay between Coulomb blockade effects,
Luttinger correlations and discrete excitations. At small bias the Fano factor
reaches the lowest attainable value, 1/2, irrespective of the ratio of the two
junction resistances. At larger voltages this asymmetry is power-law
renormalized by the interaction strength. We discuss how the measurement of
current and these features of the noise allow to extract the Luttinger liquid
parameter.Comment: 4 pages, 3 figures,to be published in Phys. Rev. B. For high
resolution image of Fig.1 see http://server1.fisica.unige.it/~braggio/doc.ht
Superconductivity in Ropes of Single-Walled Carbon Nanotubes
We report measurements on ropes of Single Walled Carbon Nanotubes (SWNT) in
low-resistance contact to non-superconducting (normal) metallic pads, at low
voltage and at temperatures down to 70 mK. In one sample, we find a two order
of magnitude resistance drop below 0.55 K, which is destroyed by a magnetic
field of the order of 1T, or by a d.c. current greater than 2.5 microA. These
features strongly suggest the existence of superconductivity in ropes of SWNT.Comment: Accepted for publication in Phys. Rev. Let
- …