252 research outputs found

    Magnetic Susceptibility as a Macrosopic Entaglement Witness

    Full text link
    We show that magnetic susceptibility can reveal spin entanglement between individual constituents of a solid, while magnetisation describes their local properties. We then show that these two thermodynamical quantities satisfy complementary relation in the quantum-mechanical sense. It describes sharing of (quantum) information in the solid between spin entanglement and local properties of its individual constituents. Magnetic susceptibility is shown to be a macroscopic spin entanglement witness that can be applied without complete knowledge of the specific model (Hamiltonian) of the solid.Comment: 6 Pages, 2 figures, revtex

    Mutually unbiased binary observable sets on N qubits

    Full text link
    The Pauli operators (tensor products of Pauli matrices) provide a complete basis of operators on the Hilbert space of N qubits. We prove that the set of 4^N-1 Pauli operators may be partitioned into 2^N+1 distinct subsets, each consisting of 2^N-1 internally commuting observables. Furthermore, each such partitioning defines a unique choice of 2^N+1 mutually unbiased basis sets in the N-qubit Hilbert space. Examples for 2 and 3 qubit systems are discussed with emphasis on the nature and amount of entanglement that occurs within these basis sets.Comment: 5 pages, 5 figures. Replacement - expanded introduction and conclusions; added reference

    Joint reality and Bell inequalities for consecutive measurements

    Get PDF
    Some new Bell inequalities for consecutive measurements are deduced under joint realism assumption, using some perfect correlation property. No locality condition is needed. When the measured system is a macroscopic system, joint realism assumption substitutes the non-invasive hypothesis advantageously, provided that the system satisfies the perfect correlation property. The new inequalities are violated quantically. This violation can be expected to be more severe than in the case of precedent temporal Bell inequalities. Some microscopic and mesoscopic situations, in which the new inequalities could be tested, are roughly considered.Comment: 7 pages, no figure

    Operationally Invariant Information in Quantum Measurements

    Get PDF
    A new measure of information in quantum mechanics is proposed which takes into account that for quantum systems the only feature known before an experiment is performed are the probabilities for various events to occur. The sum of the individual measures of information for mutually complementary observations is invariant under the choice of the particular set of complementary observations and conserved if there is no information exchange with an environment. That operational quantum information invariant results in N bits of information for a system consisting of N qubits.Comment: 4 pages, 1 figur

    Equation of state for Entanglement in a Fermi gas

    Full text link
    Entanglement distance is the maximal separation between two entangled electrons in a degenerate electron gas. Beyond that distance, all entanglement disappears. We relate entanglement distance to degeneracy pressure both for extreme relativistic and non-relativistic systems, and estimate the entanglement distance in a white dwarf. Treating entanglement as a thermodynamical quantity, we relate the entropy of formation and concurrence to relative electron distance, pressure, and temperature, to form a new equation of state for entanglement.Comment: To appear in Phys. Rev. A., 4 pages, 1 figur

    Information and The Brukner-Zeilinger Interpretation of Quantum Mechanics: A Critical Investigation

    Full text link
    In Brukner and Zeilinger's interpretation of quantum mechanics, information is introduced as the most fundamental notion and the finiteness of information is considered as an essential feature of quantum systems. They also define a new measure of information which is inherently different from the Shannon information and try to show that the latter is not useful in defining the information content in a quantum object. Here, we show that there are serious problems in their approach which make their efforts unsatisfactory. The finiteness of information does not explain how objective results appear in experiments and what an instantaneous change in the so-called information vector (or catalog of knowledge) really means during the measurement. On the other hand, Brukner and Zeilinger's definition of a new measure of information may lose its significance, when the spin measurement of an elementary system is treated realistically. Hence, the sum of the individual measures of information may not be a conserved value in real experiments.Comment: 20 pages, two figures, last version. Section 4 is replaced by a new argument. Other sections are improved. An appendix and new references are adde

    Logical independence and quantum randomness

    Full text link
    We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.Comment: 9 pages, 4 figures, published version plus additional experimental appendi

    A toy model for quantum mechanics

    Full text link
    The toy model used by Spekkens [R. Spekkens, Phys. Rev. A 75, 032110 (2007)] to argue in favor of an epistemic view of quantum mechanics is extended by generalizing his definition of pure states (i.e. states of maximal knowledge) and by associating measurements with all pure states. The new toy model does not allow signaling but, in contrast to the Spekkens model, does violate Bell-CHSH inequalities. Negative probabilities are found to arise naturally within the model, and can be used to explain the Bell-CHSH inequality violations.Comment: in which the author breaks his vow to never use the words "ontic" and "epistemic" in publi

    Macroscopic Observables Detecting Genuine Multipartite Entanglement and Partial Inseparability in Many-Body Systems

    Full text link
    We show a general approach for detecting genuine multipartite entanglement (GME) and partial inseparability in many-body-systems by means of macroscopic observables (such as the energy) only. We show that the obtained criteria, the "GME gap" and "the k-entanglement gap", detect large areas of genuine multipartite entanglement and partial entanglement in typical many body states, which are not detected by other criteria. As genuine multipartite entanglement is a necessary property for several quantum information theoretic applications such as e.g. secret sharing or certain kinds of quantum computation, our methods can be used to select or design appropriate condensed matter systems.Comment: 4 pages, 3 figures, published version, title extende

    Invariant information and quantum state estimation

    Get PDF
    The invariant information introduced by Brukner and Zeilinger, Phys. Rev. Lett. 83, 3354 (1999), is reconsidered from the point of view of quantum state estimation. We show that it is directly related to the mean error of the standard reconstruction from the measurement of a complete set of mutually complementary observables. We give its generalization in terms of the Fisher information. Provided that the optimum reconstruction is adopted, the corresponding quantity loses its invariant character.Comment: 4 pages, no figure
    corecore