49 research outputs found

    Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations

    Get PDF
    Tumors with histological features of pilocytic astrocytoma (PA), but with increased mitotic activity and additional high-grade features (particularly microvascular proliferation and palisading necrosis) have often been designated anaplastic pilocytic astrocytomas. The status of these tumors as a separate entity has not yet been conclusively demonstrated and molecular features have only been partially characterized. We performed DNA methylation profiling of 102 histologically defined anaplastic pilocytic astrocytomas. T-distributed stochastic neighbor-embedding (t-SNE) and hierarchical clustering analysis of these 102 cases against 158 reference cases from 12 glioma reference classes revealed that a subset of 83 of these tumors share a common DNA methylation profile that is distinct from the reference classes. These 83 tumors were thus denominated DNA methylation class anaplastic astrocytoma with piloid features (MC AAP). The 19 remaining tumors were distributed amongst the reference classes, with additional testing confirming the molecular diagnosis in most cases. Median age of patients with MC AAP was 41.5 years. The most frequent localization was the posterior fossa (74%). Deletions of CDKN2A/B (66/83, 80%), MAPK pathway gene alterations (49/65, 75%, most frequently affecting NF1, followed by BRAF and FGFR1) and mutations of ATRX or loss of ATRX expression (33/74, 45%) were the most common molecular alterations. All tumors were IDH1/2 wildtype. The MGMT promoter was methylated in 38/83 tumors (45%). Outcome analysis confirmed an unfavorable clinical course in comparison to PA, but better than IDH wildtype glioblastoma. In conclusion, we show that a subset of histologically defined anaplastic pilocytic astrocytomas forms a separate DNA methylation cluster, harbors recurrent alterations in MAPK pathway genes in combination with alterations of CDKN2A/B and ATRX, affects patients who are on average older than those diagnosed with PA and has an intermediate clinical outcome

    Intracranial plasmacytomas mimicking meningiomas - two remarkable cases

    No full text

    Better intra-operative understanding of arterovenous fistulas using dynamic ICG fluorescence

    No full text

    Image of neurosurgery in the media

    No full text

    Brain invasion and the risk of seizures in meningiomas

    No full text

    MGMT promoter methylation status in anaplastic meningiomas

    No full text

    Predicting the risk of postoperative recurrence and high-grade histology in patients with intracranial meningiomas using routine preoperative MRI

    No full text
    Risk factors for prediction of prognosis in meningiomas derivable from routine preoperative magnetic resonance imaging (pMRI) remain elusive. Correlations of tumor and edema volume, disruption of the arachnoid layer, heterogeneity of contrast enhancement, enhancement of the capsule, T2-intensity, tumor shape, and calcifications on pMRI with tumor recurrence and high-grade (WHO grade II/III) histology were analyzed in 565 patients who underwent surgery for WHO grade I (N = 516, 91%) or II/III (high-grade histology, N = 49, 9%) meningioma between 1991 and 2018. Edema volume (OR, 1.00; p = 0.003), heterogeneous contrast enhancement (OR, 3.10; p < 0.001), and an irregular shape (OR, 2.16; p = 0.015) were associated with high-grade histology. Multivariate analyses confirmed edema volume (OR, 1.00; p = 0.037) and heterogeneous contrast enhancement (OR, 2.51; p = 0.014) as risk factors for high-grade histology. Tumor volume (HR, 1.01; p = 0.045), disruption of the arachnoid layer (HR, 2.50; p = 0.003), heterogeneous contrast enhancement (HR, 2.05; p = 0.007), and an irregular tumor shape (HR, 2.57; p = 0.001) were correlated with recurrence. Multivariate analyses confirmed tumor volume (HR, 1.01; p = 0.032) and disruption of the arachnoid layer (HR, 2.44; p = 0.013) as risk factors for recurrence, independent of histology. Subgroup analyses revealed disruption of the arachnoid layer (HR, 9.41; p < 0.001) as a stronger risk factor for recurrence than high-grade histology (HR, 5.15; p = 0.001). Routine pMRI contains relevant information about the risk of recurrence or high-grade histology of meningioma patients. Loss of integrity of the arachnoid layer on MRI had a higher prognostic value than the WHO grading, and underlying histological or molecular alterations remain to be determined
    corecore