43 research outputs found

    Interference of a short-term exposure to nitrogen dioxide with allergic airways responses to allergenic challenges in BALB/c mice.

    Get PDF
    Nitrogen dioxide (NO(2)) is a common indoor and outdoor air pollutant whose role in the induction of asthma is unclear. We investigated the effects of NO(2) on the development of asthma-like responses to allergenic challenge in BALB/c mice. Ovalbumin (OVA)-immunized mice were intranasally challenged with OVA or saline solution just before starting a 3 h exposure to 5 or 20 ppm NO(2) or air. Twenty parts per million of NO(2) induced a significant increase of bronchopulmonary hyperreactivity in OVA-challenged mice and of permeability according to the fibronectin content of the bronchoalveolar lavage fluid (BALF) 24 h after exposure, as compared with air or 5 ppm NO(2). Eosinophilia (cell counts in the BALF and eosinophil peroxidase of lung tissue) was detected at 24 and 72 h with similar levels for air and 20 ppm NO(2), whereas a marked reduction was unexpectedly observed for 5 ppm NO(2). At 24 h, interleukin-5 in the BALF was markedly reduced at 5 ppm compared with 20 ppm NO(2) and was also more intense for 20 ppm NO(2) than for the air group. In contrast to specific IgG1 titers, anti-OVA IgE titers and interleukin-4 in the BALF were not affected by NO(2) exposure. Irrespective of the concentration of NO(2), OVA-challenged mice did not develop late mucosal metaplasia compared with those exposed to OVA-air. These results indicate that a short exposure to NO(2) can exacerbate or inhibit some features of the development of allergic disease in mice and may depend on the concentration of pollutant

    Enhancement of Methacholine-Evoked Tracheal Contraction Induced by Bacterial Lipopolysaccharides Depends on Epithelium and Tumor Necrosis Factor

    Get PDF
    Inhaled bacterial lipopolysaccharides (LPSs) induce an acute tumour necrosis factor-alpha (TNF-α-) dependent inflammatory response in the murine airways mediated by Toll-like receptor 4 (TLR4) via the myeloid differentiation MyD88 adaptor protein pathway. However, the contractile response of the bronchial smooth muscle and the role of endogenous TNFα in this process have been elusive. We determined the in vivo respiratory pattern of C57BL/6 mice after intranasal LPS administration with or without the presence of increasing doses of methacholine (MCh). We found that LPS administration altered the basal and MCh-evoked respiratory pattern that peaked at 90 min and decreased thereafter in the next 48 h, reaching basal levels 7 days later. We investigated in controlled ex vivo condition the isometric contraction of isolated tracheal rings in response to MCh cholinergic stimulation. We observed that preincubation of the tracheal rings with LPS for 90 min enhanced the subsequent MCh-induced contractile response (hyperreactivity), which was prevented by prior neutralization of TNFα with a specific antibody. Furthermore, hyperreactivity induced by LPS depended on an intact epithelium, whereas hyperreactivity induced by TNFα was well maintained in the absence of epithelium. Finally, the enhanced contractile response to MCh induced by LPS when compared with control mice was not observed in tracheal rings from TLR4- or TNF- or TNF-receptor-deficient mice. We conclude that bacterial endotoxin-mediated hyperreactivity of isolated tracheal rings to MCh depends upon TLR4 integrity that signals the activation of epithelium, which release endogenous TNFα

    Leukotrienes mediate part of Ova-induced lung effects in mice via EGFR

    No full text

    Bronchopulmonary hyperreactivity and lung eosinophil sequestration but not their migration to the alveolar compartment are independent of interleukin-5 in allergic mice

    No full text
    International audienceIL-5 is present in the lung and in the circulation following allergenic challenges in humans and in animals, but its role in bronchopulmonary hyperreactivity (BHR) and lung and bronchoalveolar lavage fluid (BALF) eosinophilia remains unclear. Because compartmentalization of IL-5 is recognized, the anti-IL-5 monoclonal antibody TRFK-5 or its isotype control GL113 were delivered selectively intranasally (i.n.) and/or intravenously (i.v.) before the prior i.n. challenge with 10 mug OVA in BALB/c and BP2 "Biozzi" mice immunized according to optimized protocols with read-outs taken 24 h later. IL-5 in the BALF was suppressed by i.n. TRFK-5, whereas its production persisted in the serum. Conversely, i.v. TRFK-5 suppressed IL-5 in the serum but not in the BALF. IL-5 was suppressed in conditioned medium from lung explants from mice treated with i.n. TRFK-5, which did not affect the other Th2 cytokines, IL-4 and IL-13. IL-5 is thus present in the alveolar, pulmonary and circulatory compartments following an i.n. allergenic challenge. When specific anti-IL-5 antibodies were delivered by the same i.n. route, BALF eosinophilia was markedly reduced, whereas BHR and lung eosinophil sequestration persisted totally or mostly, in both strains. The passage of eosinophils from lungs to alveoli depends on IL-5 released into the BALF, but not into circulation, whereas their lung sequestration and BHR are mostly IL-5-independent. IL-5 alone does not account for the complexities of BHR or of eosinophil tissue trapping, and lung-targeted immunobiologicals should be delivered into the appropriate compartment in order to assess the role of specific mediators in experimental airways/lung allergy

    Bronchopulmonary hyperreactivity and lung eosinophil sequestration but not their migration to the alveolar compartment are independent of interleukin-5 in allergic mice

    No full text
    International audienceIL-5 is present in the lung and in the circulation following allergenic challenges in humans and in animals, but its role in bronchopulmonary hyperreactivity (BHR) and lung and bronchoalveolar lavage fluid (BALF) eosinophilia remains unclear. Because compartmentalization of IL-5 is recognized, the anti-IL-5 monoclonal antibody TRFK-5 or its isotype control GL113 were delivered selectively intranasally (i.n.) and/or intravenously (i.v.) before the prior i.n. challenge with 10 mug OVA in BALB/c and BP2 "Biozzi" mice immunized according to optimized protocols with read-outs taken 24 h later. IL-5 in the BALF was suppressed by i.n. TRFK-5, whereas its production persisted in the serum. Conversely, i.v. TRFK-5 suppressed IL-5 in the serum but not in the BALF. IL-5 was suppressed in conditioned medium from lung explants from mice treated with i.n. TRFK-5, which did not affect the other Th2 cytokines, IL-4 and IL-13. IL-5 is thus present in the alveolar, pulmonary and circulatory compartments following an i.n. allergenic challenge. When specific anti-IL-5 antibodies were delivered by the same i.n. route, BALF eosinophilia was markedly reduced, whereas BHR and lung eosinophil sequestration persisted totally or mostly, in both strains. The passage of eosinophils from lungs to alveoli depends on IL-5 released into the BALF, but not into circulation, whereas their lung sequestration and BHR are mostly IL-5-independent. IL-5 alone does not account for the complexities of BHR or of eosinophil tissue trapping, and lung-targeted immunobiologicals should be delivered into the appropriate compartment in order to assess the role of specific mediators in experimental airways/lung allergy
    corecore