3,831 research outputs found
Higher twists in the pion structure function
We calculate the QCD moments of the pion structure function using Drell-Yan
data on the quark distributions in the pion and a phenomenological model for
the resonance region. The extracted higher twist corrections are found to be
larger than those for the nucleon, contributing around 50% of the lowest moment
at Q^2=1 GeV^2.Comment: 8 pages, 3 figures, to appear in Phys. Rev.
Valence-quark distributions in the pion
We calculate the pion's valence-quark momentum-fraction probability
distribution using a Dyson-Schwinger equation model. Valence-quarks with an
active mass of 0.30 GeV carry 71% of the pion's momentum at a resolving scale
q_0=0.54 GeV = 1/(0.37 fm). The shape of the calculated distribution is
characteristic of a strongly bound system and, evolved from q_0 to q=2 GeV, it
yields first, second and third moments in agreement with lattice and
phenomenological estimates, and valence-quarks carrying 49% of the pion's
momentum. However, pointwise there is a discrepancy between our calculated
distribution and that hitherto inferred from parametrisations of extant
pion-nucleon Drell-Yan data.Comment: 8 pages, 3 figures, REVTEX, aps.sty, epsfig.sty, minor corrections,
version to appear in PR
Meson Cloud of the Nucleon in Polarized Semi-Inclusive Deep-Inelastic Scattering
We investigate the possibility of identifying an explicit pionic component of
the nucleon through measurements of polarized baryon fragments
produced in deep-inelastic leptoproduction off polarized protons, which may
help to identify the physical mechanism responsible for the breaking of the
Gottfried sum rule. The pion-exchange model predicts highly correlated
polarizations of the and target proton, in marked contrast with
the competing diquark fragmentation process. Measurement of asymmetries in
polarized production may also reveal the presence of a kaon cloud in
the nucleon.Comment: 23 pages REVTeX, 7 uuencoded figures, accepted for publication in
Zeit. Phys.
Search for the QCD critical point in nuclear collisions at the CERN SPS
Pion production in nuclear collisions at the SPS is investigated with the aim
to search, in a restricted domain of the phase diagram, for power-laws in the
behavior of correlations which are compatible with critical QCD. We have
analyzed interactions of nuclei of different size (p+p, C+C, Si+Si, Pb+Pb) at
158 GeV adopting, as appropriate observables, scaled factorial moments in a
search for intermittent fluctuations in transverse dimensions. The analysis is
performed for pairs with invariant mass very close to the two-pion
threshold. In this sector one may capture critical fluctuations of the sigma
component in a hadronic medium, even if the -meson has no well defined
vacuum state. It turns out that for the Pb+Pb system the proposed analysis
technique cannot be applied without entering the invariant mass region with
strong Coulomb correlations. As a result the treatment becomes inconclusive in
this case. Our results for the other systems indicate the presence of power-law
fluctuations in the freeze-out state of Si+Si approaching in size the
prediction of critical QCD.Comment: 31 pages, 11 figure
Transverse lattice calculation of the pion light-cone wavefunctions
We calculate the light-cone wavefunctions of the pion by solving the meson
boundstate problem in a coarse transverse lattice gauge theory using DLCQ. A
large-N_c approximation is made and the light-cone Hamiltonian expanded in
massive dynamical fields at fixed lattice spacing. In contrast to earlier
calculations, we include contributions from states containing many gluonic
link-fields between the quarks.The Hamiltonian is renormalised by a combination
of covariance conditions on boundstates and fitting the physical masses M_rho
and M_pi, decay constant f_pi, and the string tension sigma. Good covariance is
obtained for the lightest 0^{-+} state, which we identify with the pion. Many
observables can be deduced from its light-cone wavefunctions.After perturbative
evolution,the quark valence structure function is found to be consistent with
the experimental structure function deduced from Drell-Yan pi-nucleon data in
the valence region x > 0.5. In addition, the pion distribution amplitude is
consistent with the experimental distribution deduced from the pi gamma^* gamma
transition form factor and diffractive dissociation. A new observable we
calculate is the probability for quark helicity correlation. We find a 45%
probability that the valence-quark helicities are aligned in the pion.Comment: 27 pages, 9 figure
Inclusive production of charged pions in p+C collisions at 158 GeV/c beam momentum
The production of charged pions in minimum bias p+C interactions is studied
using a sample of 377000 inelastic events obtained with the NA49 detector at
the CERN SPS at 158 GeV/c beam momentum. The data cover a phase space area
ranging from 0 to 1.8 GeV/c in transverse momentum and from -0.1 to 0.5 in
Feynman x. Inclusive invariant cross sections are given on a grid of 270 bins
per charge thus offering for the first time a dense coverage of the projectile
hemisphere and of the cross-over region into the target fragmentation zone.Comment: 31 pages, 30 figures, submitted to European Journal of Physic
System-size and centrality dependence of charged kaon and pion production in nucleus-nucleus collisions at 40A GeV and158A GeV beam energy
Measurements of charged pion and kaon production are presented in centrality
selected Pb+Pb collisions at 40A GeV and 158A GeV beam energy as well as in
semi-central C+C and Si+Si interactions at 40A GeV. Transverse mass spectra,
rapidity spectra and total yields are determined as a function of centrality.
The system-size and centrality dependence of relative strangeness production in
nucleus-nucleus collisions at 40A GeV and 158A GeV beam energy are derived from
the data presented here and published data for C+C and Si+Si collisions at 158A
GeV beam energy. At both energies a steep increase with centrality is observed
for small systems followed by a weak rise or even saturation for higher
centralities. This behavior is compared to calculations using transport models
(UrQMD and HSD), a percolation model and the core-corona approach.Comment: 32 pages, 14 figures, 4 tables, typo table II correcte
Phase-space dependence of particle-ratio fluctuations in Pb+Pb collisions from 20A to 158A GeV beam energy
A novel approach, the identity method, was used for particle identification
and the study of fluctuations of particle yield ratios in Pb+Pb collisions at
the CERN Super Proton Synchrotron (SPS). This procedure allows to unfold the
moments of the unknown multiplicity distributions of protons (p), kaons (K),
pions () and electrons (e). Using these moments the excitation function of
the fluctuation measure [A,B] was measured, with A and
B denoting different particle types. The obtained energy dependence of
agrees with previously published NA49 results on the related
measure . Moreover, was found to depend
on the phase space coverage for [K,p] and [K,] pairs. This feature most
likely explains the reported differences between measurements of NA49 and those
of STAR in central Au+Au collisions
- …