66 research outputs found

    Role of dynamical particle-vibration coupling in reconciliation of the d3/2d_{3/2} puzzle for spherical proton emitters

    Get PDF
    It has been observed that decay rate for proton emission from d3/2d_{3/2} single particle state is systematically quenched compared with the prediction of a one dimensional potential model although the same model successfully accounts for measured decay rates from s1/2s_{1/2} and h11/2h_{11/2} states. We reconcile this discrepancy by solving coupled-channels equations, taking into account couplings between the proton motion and vibrational excitations of a daughter nucleus. We apply the formalism to proton emitting nuclei 160,161^{160,161}Re to show that there is a certain range of parameter set of the excitation energy and the dynamical deformation parameter for the quadrupole phonon excitation which reproduces simultaneously the experimental decay rates from the 2d3/2d_{3/2}, 3s1/2s_{1/2} and 1h11/2h_{11/2} states in these nuclei.Comment: RevTex, 12 pages, 4 eps figure

    Theoretical description of deformed proton emitters: nonadiabatic coupled-channel method

    Get PDF
    The newly developed nonadiabatic method based on the coupled-channel Schroedinger equation with Gamow states is used to study the phenomenon of proton radioactivity. The new method, adopting the weak coupling regime of the particle-plus-rotor model, allows for the inclusion of excitations in the daughter nucleus. This can lead to rather different predictions for lifetimes and branching ratios as compared to the standard adiabatic approximation corresponding to the strong coupling scheme. Calculations are performed for several experimentally seen, non-spherical nuclei beyond the proton dripline. By comparing theory and experiment, we are able to characterize the angular momentum content of the observed narrow resonance.Comment: 12 pages including 10 figure

    Urban Air Mobility Airspace Integration Concepts and Considerations

    Get PDF
    Urban Air Mobility (UAM) - defined as safe and efficient air traffic operations in a metropolitan area for manned aircraft and unmanned aircraft systems - is being researched and developed by industry, academia, and government. Significant resources have been invested toward cultivating an ecosystem for Urban Air Mobility that includes manufacturers of electric vertical takeoff and landing aircraft, builders of takeoff and landing areas, and researchers of the airspace integration concepts, technologies, and procedures needed to conduct Urban Air Mobility operations safely and efficiently alongside other airspace users. This paper provides high-level descriptions of both emergent and early expanded operational concepts for Urban Air Mobility that NASA is developing. The scope of this work is defined in terms of missions, aircraft, airspace, and hazards. Past and current Urban Air Mobility operations are also reviewed, and the considerations for the data exchange architecture and communication, navigation, and surveillance requirements are also discussed. This paper will serve as a starting point to develop a framework for NASA's Urban Air Mobility airspace integration research and development efforts with partners and stakeholders that could include fast-time simulations, human-in-the-loop (HITL) simulations, and flight demonstrations

    Ghosts of Yellowstone: Multi-Decadal Histories of Wildlife Populations Captured by Bones on a Modern Landscape

    Get PDF
    Natural accumulations of skeletal material (death assemblages) have the potential to provide historical data on species diversity and population structure for regions lacking decades of wildlife monitoring, thereby contributing valuable baseline data for conservation and management strategies. Previous studies of the ecological and temporal resolutions of death assemblages from terrestrial large-mammal communities, however, have largely focused on broad patterns of community composition in tropical settings. Here, I expand the environmental sampling of large-mammal death assemblages into a temperate biome and explore more demanding assessments of ecological fidelity by testing their capacity to record past population fluctuations of individual species in the well-studied ungulate community of Yellowstone National Park (Yellowstone). Despite dramatic ecological changes following the 1988 wildfires and 1995 wolf re-introduction, the Yellowstone death assemblage is highly faithful to the living community in species richness and community structure. These results agree with studies of tropical death assemblages and establish the broad capability of vertebrate remains to provide high-quality ecological data from disparate ecosystems and biomes. Importantly, the Yellowstone death assemblage also correctly identifies species that changed significantly in abundance over the last 20 to ∌80 years and the directions of those shifts (including local invasions and extinctions). The relative frequency of fresh versus weathered bones for individual species is also consistent with documented trends in living population sizes. Radiocarbon dating verifies the historical source of bones from Equus caballus (horse): a functionally extinct species. Bone surveys are a broadly valuable tool for obtaining population trends and baseline shifts over decadal-to-centennial timescales
    • 

    corecore