105 research outputs found

    High Scale Physics Connection to LHC Data

    Full text link
    The existing data appears to provide hints of an underlying high scale theory. These arise from the gauge coupling unification, from the smallness of the neutrino masses, and via a non-vanishing muon anomaly. An overview of high scale models is given with a view to possible tests at the Large Hadron Collider. Specifically we discuss here some generic approaches to deciphering their signatures. We also consider an out of the box possibility of a four generation model where the fourth generation is a mirror generation rather than a sequential generation. Such a scenario can lead to some remarkably distinct signatures at the LHC.Comment: 23 pages, no figures. Based on invited lectures at the 46th Course at the International School of Subnuclear Physics- Erice -Sicily: 29 August -7 September, 200

    The Footprint of F-theory at the LHC

    Full text link
    Recent work has shown that compactifications of F-theory provide a potentially attractive phenomenological scenario. The low energy characteristics of F-theory GUTs consist of a deformation away from a minimal gauge mediation scenario with a high messenger scale. The soft scalar masses of the theory are all shifted by a stringy effect which survives to low energies. This effect can range from 0 GeV up to ~ 500 GeV. In this paper we study potential collider signatures of F-theory GUTs, focussing in particular on ways to distinguish this class of models from other theories with an MSSM spectrum. To accomplish this, we have adapted the general footprint method developed recently for distinguishing broad classes of string vacua to the specific case of F-theory GUTs. We show that with only 5 fb^(-1) of simulated LHC data, it is possible to distinguish many mSUGRA models and low messenger scale gauge mediation models from F-theory GUTs. Moreover, we find that at 5 fb^(-1), the stringy deformation away from minimal gauge mediation produces observable consequences which can also be detected to a level of order ~ +/- 80 GeV. In this way, it is possible to distinguish between models with a large and small stringy deformation. At 50 fb^(-1), this improves to ~ +/- 10 GeV.Comment: 85 pages, 37 figure

    When Anomaly Mediation is UV Sensitive

    Full text link
    Despite its successes---such as solving the supersymmetric flavor problem---anomaly mediated supersymmetry breaking is untenable because of its prediction of tachyonic sleptons. An appealing solution to this problem was proposed by Pomarol and Rattazzi where a threshold controlled by a light field deflects the anomaly mediated supersymmetry breaking trajectory, thus evading tachyonic sleptons. In this paper we examine an alternate class of deflection models where the non-supersymmetric threshold is accompanied by a heavy, instead of light, singlet. The low energy form of this model is the so-called extended anomaly mediation proposed by Nelson and Weiner, but with potential for a much higher deflection threshold. The existence of this high deflection threshold implies that the space of anomaly mediated supersymmetry breaking deflecting models is larger than previously thought.Comment: 14 pages, 1 figure (version to appear in JHEP

    Fine-tuning implications for complementary dark matter and LHC SUSY searches

    Get PDF
    The requirement that SUSY should solve the hierarchy problem without undue fine-tuning imposes severe constraints on the new supersymmetric states. With the MSSM spectrum and soft SUSY breaking originating from universal scalar and gaugino masses at the Grand Unification scale, we show that the low-fine-tuned regions fall into two classes that will require complementary collider and dark matter searches to explore in the near future. The first class has relatively light gluinos or squarks which should be found by the LHC in its first run. We identify the multijet plus E_T^miss signal as the optimal channel and determine the discovery potential in the first run. The second class has heavier gluinos and squarks but the LSP has a significant Higgsino component and should be seen by the next generation of direct dark matter detection experiments. The combined information from the 7 TeV LHC run and the next generation of direct detection experiments can test almost all of the CMSSM parameter space consistent with dark matter and EW constraints, corresponding to a fine-tuning not worse than 1:100. To cover the complete low-fine-tuned region by SUSY searches at the LHC will require running at the full 14 TeV CM energy; in addition it may be tested indirectly by Higgs searches covering the mass range below 120 GeV.Comment: References added. Version accepted for publication in JHE

    Phenomenological Implications of Deflected Mirage Mediation: Comparison with Mirage Mediation

    Get PDF
    We compare the collider phenomenology of mirage mediation and deflected mirage mediation, which are two recently proposed "mixed" supersymmetry breaking scenarios motivated from string compactifications. The scenarios differ in that deflected mirage mediation includes contributions from gauge mediation in addition to the contributions from gravity mediation and anomaly mediation also present in mirage mediation. The threshold effects from gauge mediation can drastically alter the low energy spectrum from that of pure mirage mediation models, resulting in some cases in a squeezed gaugino spectrum and a gluino that is much lighter than other colored superpartners. We provide several benchmark deflected mirage mediation models and construct model lines as a function of the gauge mediation contributions, and discuss their discovery potential at the LHC.Comment: 29 pages, 9 figure

    Studying Gaugino Mass Unification at the LHC

    Full text link
    We begin a systematic study of how gaugino mass unification can be probed at the CERN Large Hadron Collider (LHC) in a quasi-model independent manner. As a first step in that direction we focus our attention on the theoretically well-motivated mirage pattern of gaugino masses, a one-parameter family of models of which universal (high scale) gaugino masses are a limiting case. We improve on previous methods to define an analytic expression for the metric on signature space and use it to study one-parameter deviations from universality in the gaugino sector, randomizing over other soft supersymmetry-breaking parameters. We put forward three ensembles of observables targeted at the physics of the gaugino sector, allowing for a determination of this non-universality parameter without reconstructing individual mass eigenvalues or the soft supersymmetry-breaking gaugino masses themselves. In this controlled environment we find that approximately 80% of the supersymmetric parameter space would give rise to a model for which our method will detect non-universality in the gaugino mass sector at the 10% level with an integrated luminosity of order 10 inverse femptobarns. We discuss strategies for improving the method and for adding more realism in dealing with the actual experimental circumstances of the LHC

    The No-Scale Multiverse at the LHC

    Full text link
    We present a contemporary perspective on the String Landscape and the Multiverse of plausible string, M- and F-theory vacua, seeking to demonstrate a non-zero probability for the existence of a universe matching our own observed physics within the solution ensemble, arguing for the importance of No-Scale Supergravity as an essential common underpinning. Our context is a highly detailed phenomenological probe of No-Scale F-SU(5), a model representing the intersection of the F-lipped SU(5) X U(1)_X Grand Unified Theory (GUT) with extra TeV-Scale vector-like multiplets derived out of F-theory, and the dynamics of No-Scale Supergravity. We present a highly constrained "Golden" region with tan(beta) \sim 15, m_t = 173.0 - 174.4 GeV, M_1/2 = 455 - 481 GeV, and M_V = 691 - 1020 GeV, which simultaneously satisfies all known experimental constraints. We supplement this bottom-up phenomenological perspective with a top-down theoretical analysis of the one-loop effective Higgs potential, achieving a striking consonance via the dynamic determination of tan(beta) and M_1/2 at the local secondary minimization of the spontaneously broken electroweak Higgs vacuum V_min. We present the distinctive signatures of No-Scale F-SU(5) at the LHC, where a light stop and gluino are expected to generate a surplus of ultra-high multiplicity (>= 9) hadronic jet events. We propose modest alterations to the canonical background selection cut strategy which would enhance resolution of these events, while readily suppressing the contribution of all Standard Model processes, and allowing a clear differentiation from competing models of new physics. Detection by the LHC of the ultra-high jet signal would constitute a suggestive evocation of the intimately linked stringy origins of F-SU(5), and could provide a glimpse into the fundamental string moduli, and possibly even the workings of the No-Scale Multiverse.Comment: A review of recent work, submitted to the DICE 2010 Workshop proceedings, based on the invited talk by D.V.N. (20 Pages, 5 Tables, 18 Figures

    Determining the WIMP mass from a single direct detection experiment, a more detailed study

    Full text link
    The energy spectrum of nuclear recoils in Weakly Interacting Massive Particle (WIMP) direct detection experiments depends on the underlying WIMP mass. We study how the accuracy with which the WIMP mass could be determined by a single direct detection experiment depends on the detector configuration and the WIMP properties. We investigate the effects of varying the underlying WIMP mass and cross-section, the detector target nucleus, exposure, energy threshold and maximum energy, the local circular speed and the background event rate and spectrum. The number of events observed is directly proportional to both the exposure and the cross-section, therefore these quantities have the greatest bearing on the accuracy of the WIMP mass determination. The relative capabilities of different detectors to determine the WIMP mass depend not only on the WIMP and target masses, but also on their energy thresholds. We find that the rapid decrease of the nuclear form factor with increasing momentum transfer which occurs for heavy nuclei, means that heavy nuclei will not necessarily be able to measure the mass of heavy WIMPs more accurately. Uncertainty in the local circular speed and non-negligible background would both lead to systematic errors in the WIMP mass determination. With a single detector it will be difficult to disentangle a WIMP signal (and the WIMP mass) from background if the background spectrum has a similar shape to the WIMP spectrum (i.e. exponential background, or flat background and a heavy WIMP).Comment: 20 pages, 11 figures, version to appear in JCAP, minor changes to presentatio

    Mixed Mediation of Supersymmetry Breaking with Anomalous U(1) Gauge Symmetry

    Full text link
    Models with anomalous U(1) gauge symmetry contain various superfields which can have nonzero supersymmetry breaking auxiliary components providing the origin of soft terms in the visible sector, e.g. the U(1) vector superfield, the modulus or dilaton superfield implementing the Green-Schwarz anomaly cancellation mechanism, U(1)-charged but standard model singlet matter superfield required to cancel the Fayet-Iliopoulos term, and finally the supergravity multiplet. We examine the relative strength between these supersymmetry breaking components in a simple class of models, and find that various different mixed mediations of supersymmetry breaking, involving the modulus, gauge, anomaly and D-term mediations, can be realized depending upon the characteristics of D-flat directions and how those D-flat directions are stabilized with a vanishing cosmological constant. We identify two parameters which represent such properties and thus characterize how the various mediations are mixed. We also discuss the moduli stabilization and soft terms in a variant of KKLT scenario, in which the visible sector K\"ahler modulus is stabilized by the D-term potential of anomalous U(1) gauge symmetry.Comment: 30 pages, 5 figure
    corecore