33 research outputs found
Superconducting nanowires: quantum confinement and spatially dependent Hartree-Fock potential
It is well-known that in bulk, the solution of the Bogoliubov-de Gennes
equations is the same whether or not the Hartree-Fock term is included. Here
the Hartree-Fock potential is position independent and, so, gives the same
contribution to both the single-electron energies and the Fermi level (the
chemical potential). Thus, the single-electron energies measured from the Fermi
level (they control the solution) stay the same. It is not the case for
nanostructured superconductors, where quantum confinement breaks the
translational symmetry and results in a position dependent Hartree-Fock
potential. In this case its contribution to the single-electron energies
depends on the relevant quantum numbers. We numerically solved the
Bogoliubov-de Gennes equations with the Hartree-Fock term for a clean
superconducting nanocylinder and found a shift of the curve representing the
thickness-dependent oscillations of the critical superconducting temperature to
larger diameters
Absolute Negative Conductivity in Two-Dimensional Electron Systems Associated with Acoustic Scattering Stimulated by Microwave Radiation
We discuss the feasibility of absolute negative conductivity (ANC) in
two-dimensional electron systems (2DES) stimulated by microwave radiation in
transverse magnetic field. The mechanism of ANC under consideration is
associated with the electron scattering on acoustic piezoelectric phonons
accompanied by the absorption of microwave photons. It is demonstrated that the
dissipative components of the 2DES dc conductivity can be negative
() when the microwave frequency is
somewhat higher than the electron cyclotron frequency or its
harmonics. The concept of ANC associated with such a scattering mechanism can
be invoked to explain the nature of the occurrence of zero-resistance
``dissipationless'' states observed in recent experiments.Comment: 7 pager, 2 figure
Electric-Field Breakdown of Absolute Negative Conductivity and Supersonic Streams in Two-Dimensional Electron Systems with Zero Resistance/Conductance States
We calculate the current-voltage characteristic of a two-dimensional electron
system (2DES) subjected to a magnetic field at strong electric fields. The
interaction of electrons with piezoelectric acoustic phonons is considered as a
major scattering mechanism governing the current-voltage characteristic. It is
shown that at a sufficiently strong electric field corresponding to the Hall
drift velocity exceeding the velocity of sound, the dissipative current
exhibits an overshoot. The overshoot of the dissipative current can result in a
breakdown of the absolute negative conductivity caused by microwave irradiation
and, therefore, substantially effect the formation of the domain structures
with the zero-resistance and zero-conductance states and supersonic electron
streams.Comment: 5 pages, 4 figure
Radiation induced oscillations of the Hall resistivity in two-dimensional electron systems
We consider the effect of microwave radiation on the Hall resistivity in
two-dimension electron systems. It is shown that the photon-assisted impurity
scattering of electrons can result in oscillatory dependences of both
dissipative and Hall components of the conductivity and resistivity tensors on
the ratio of radiation frequency to cyclotron frequency. The Hall resistivity
can include a component induced by microwave radiation which is an even
function of the magnetic field. The phase of the dissipative resistivity
oscillations and the polarization dependence of their amplitude are compared
with those of the Hall resistivity oscillations. The developed model can
clarify the results of recent experimental observations of the radiation
induced Hall effect.Comment: 4 pages, 1 figur
Nonlinear effects in microwave photoconductivity of two-dimensional electron systems
We present a model for microwave photoconductivity of two-dimensional
electron systems in a magnetic field which describes the effects of strong
microwave and steady-state electric fields. Using this model, we derive an
analytical formula for the photoconductivity associated with photon- and
multi-photon-assisted impurity scattering as a function of the frequency and
power of microwave radiation. According to the developed model, the microwave
conductivity is an oscillatory function of the frequency of microwave radiation
and the cyclotron frequency which turns zero at the cyclotron resonance and its
harmonics. It exhibits maxima and minima (with absolute negative conductivity)
at the microwave frequencies somewhat different from the resonant frequencies.
The calculated power dependence of the amplitude of the microwave
photoconductivity oscillations exhibits pronounced sublinear behavior similar
to a logarithmic function. The height of the microwave photoconductivity maxima
and the depth of its minima are nonmonotonic functions of the electric field.
It is pointed to the possibility of a strong widening of the maxima and minima
due to a strong sensitivity of their parameters on the electric field and the
presence of strong long-range electric-field fluctuations. The obtained
dependences are consistent with the results of the experimental observations.Comment: 9 pages, 6 figures Labeling of the curves in Fig.3 correcte