55 research outputs found

    Radiocarbon and geologic evidence reveal Ilopango volcano as source of the colossal ‘mystery’ eruption of 539/40 CE

    Get PDF
    Highlights • Major eruption of Ilopango volcano, El Salvador occurred in the first half of the 6th century. • Ilopango eruption is consistent with ‘mystery’ eruption of 540 CE that caused global cooling. • Magnitude 7 event ranks as one of the 10 largest on Earth in past 7000 years. • Impacts on the Maya of Central America were severe, including estimated 100,000 + fatalities. Abstract Ilopango volcano (El Salvador) erupted violently during the Maya Classic Period (250–900 CE) in a densely-populated and intensively-cultivated region of the southern Maya realm, causing regional abandonment of an area covering more than 20,000 km2. However, neither the regional nor global impacts of the Tierra Blanca Joven (TBJ) eruption in Mesoamerica have been well appraised due to limitations in available volcanological, chronological, and archaeological observations. Here we present new evidence of the age, magnitude and sulfur release of the TBJ eruption, establishing it as one of the two hitherto unidentified volcanic triggers of a period of stratospheric aerosol loading that profoundly impacted Northern Hemisphere climate and society between circa 536 and 550 CE. Our chronology is derived from 100 new radiocarbon measurements performed on three subfossil tree trunks enveloped in proximal TBJ pyroclastic deposits. We also reassess the eruption magnitude using terrestrial (El Salvador, Guatemala, Honduras) and near-shore marine TBJ tephra deposit thickness measurements. Together, our new constraints on the age, eruption size (43.6 km3 Dense Rock Equivalent of magma, magnitude = 7.0) and sulfur yield (∼9–90 Tg), along with Ilopango's latitude (13.7° N), squarely frame the TBJ as the major climate-forcing eruption of 539 or 540 CE identified in bipolar ice cores and sourced to the tropics. In addition to deepening appreciation of the TBJ eruption's impacts in Mesoamerica, linking it to the major Northern Hemisphere climatic downturn of the mid-6th century CE offers another piece in the puzzle of understanding Eurasian history of the period

    Mutations in STK11 gene in Czech Peutz-Jeghers patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peutz-Jeghers syndrome (PJS) is an autosomal dominant hereditary disease characterized by mucocutaneous pigmentation and gastrointestinal hamartomatous polyposis. The germline mutations in the serine/threonine kinase 11 (<it>STK11</it>) gene have been shown to be associated with the disease. Individuals with PJS are at increased risk for development of various neoplasms. The aim of the present study was to characterize the genotype and phenotype of Czech patients with PJS.</p> <p>Methods</p> <p>We examined genomic DNA of 8 individuals from five Czech families by sequencing analysis of <it>STK11 </it>gene, covering its promotor region, the entire coding region and the splice-site boundaries, and by multiplex ligation-dependent probe amplification (MLPA) assay designed for the identification of large exonic deletions or duplications of <it>STK11 </it>gene.</p> <p>Results</p> <p>We found pathogenic mutations in <it>STK11 </it>gene in two families fulfilling the diagnostic criteria of PJS and in one of three sporadic cases not complying with the criteria. The patient with the frameshift mutation in <it>STK11 </it>gene developed aggressive gastric cancer. No other studied proband has developed a carcinoma so far.</p> <p>Conclusion</p> <p>Our results showed that a germline mutation of <it>STK11 </it>gene can be found not only in probands fulfilling the PJS diagnostic criteria, but also in some sporadic cases not complying with the criteria. Moreover, we observed a new case of aggressive gastric cancer in a young patient with a frameshift mutation of <it>STK11 </it>gene.</p
    corecore