5,420 research outputs found
Synthesis of improved phenolic resins
Twenty seven addition cured phenolic resin compositions were prepared and tested for their ability to give char residues comparable to state-of-the-art phenolic resins. Cyanate, epoxy, allyl, acrylate, methacrylate and ethynyl derivatized phenolic oligomers were investigated. The novolac-cyanate and propargyl-novolac resins provided anaerobic char yields at 800 C of 58 percent. A 59 percent char yield was obtained from modified epoxy novolacs. A phosphonitrilic derivative was found to be effective as an additive for increasing char yields. The novolac-cyanate, epoxy-novolac and methacrylate-epoxy-novolac systems were investigated as composite matrices with Thornel 300 graphite fiber. All three resins showed good potential as composite matrices. The free radical cured methacrylate-epoxy-novolac graphite composite provided short beam shear strengths at room temperature of 93.3 MPa (13.5 ksi). The novolac-cyanate graphite composite produced a short beam shear strength of 74 MPa (10.7 ksi) and flexural strength of 1302 MPa (189 ksi) at 177 C. Air heat aging of the novolac-cyanate and epoxy novolac based composites for 12 weeks at 204 C showed good property retention
NICMOS Observations of Low-Redshift Quasar Host Galaxies
We have obtained Near-Infrared Camera and Multi-Object Spectrometer images of
16 radio quiet quasars observed as part of a project to investigate the
``luminosity/host-mass limit.'' The limit results were presented in McLeod,
Rieke, & Storrie-Lombardi (1999). In this paper, we present the images
themselves, along with 1- and 2-dimensional analyses of the host galaxy
properties. We find that our model-independent 1D technique is reliable for use
on ground-based data at low redshifts; that many radio-quiet quasars live in
deVaucouleurs-law hosts, although some of the techniques used to determine host
type are questionable; that complex structure is found in many of the hosts,
but that there are some hosts that are very smooth and symmetric; and that the
nuclei radiate at ~2-20% of the Eddington rate based on the assumption that all
galaxies have central black holes with a constant mass fraction of 0.6%.
Despite targeting hard-to-resolve hosts, we have failed to find any that imply
super-Eddington accretion rates.Comment: To appear in ApJ, 28 pages including degraded figures. Download the
paper with full-resolutio figures from
http://www.astro.wellesley.edu/kmcleod/mm.p
On the Rotation Period of (90377) Sedna
We present precise, ~1%, r-band relative photometry of the unusual solar
system object (90377) Sedna. Our data consist of 143 data points taken over
eight nights in October 2004 and January 2005. The RMS variability over the
longest contiguous stretch of five nights of data spanning nine days is only
1.3%. This subset of data alone constrain the amplitude of any long-period
variations with period P to be A<1% (P/20 days)^2. Over the course of any given
5-hour segment, the data exhibits significant linear trends not seen in a
comparison star of similar magnitude, and in a few cases these segments show
clear evidence for curvature at the level of a few millimagnitudes per hour^2.
These properties imply that the rotation period of Sedna is O(10 hours), cannot
be 10 days, unless the intrinsic light curve has
significant and comparable power on multiple timescales, which is unlikely. A
sinusoidal fit yields a period of P=(10.273 +/- 0.002) hours and semi-amplitude
of A=(1.1 +/- 0.1)%. There are additional acceptable fits with flanking periods
separated by ~3 minutes, as well as another class of fits with P ~ 18 hours,
although these later fits appear less viable based on visual inspection. Our
results indicate that the period of Sedna is likely consistent with typical
rotation periods of solar system objects, thus obviating the need for a massive
companion to slow its rotation.Comment: 7 pages, 4 figures, 2.5 tables. Final ApJL version, minor changes.
Full light curve data in tex
Results from the CASTLES Survey of Gravitational Lenses
We show that most gravitational lenses lie on the passively evolving
fundamental plane for early-type galaxies. For burst star formation models (1
Gyr of star formation, then quiescence) in low Omega_0 cosmologies, the stellar
populations of the lens galaxies must have formed at z_f > 2. Typical lens
galaxies contain modest amounts of patchy extinction, with a median
differential extinction for the optical (radio) selected lenses of E(B-V) =
0.04 (0.07) mag. The dust can be used to determine both extinction laws and
lens redshifts. For example, the z_l=0.96 elliptical lens in MG0414+0534 has an
R_V=1.7 +/- 0.1 mean extinction law. Arc and ring images of the quasar and AGN
source host galaxies are commonly seen in NICMOS H band observations. The hosts
are typically blue, L < L_* galaxies.Comment: 12 pages, 10 figures, from Proceedings of the 9th Annual Astrophysics
Conference in Maryland, After the Dark Ages: When Galaxies Were Youn
Decline and Fall at the White House
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67262/2/10.1177_009365027700400103.pd
- …