8,523 research outputs found

    Model-independent Limits from Spin-dependent WIMP Dark Matter Experiments

    Full text link
    Spin-dependent WIMP searches have traditionally presented results within an odd group approximation and by suppressing one of the spin-dependent interaction cross sections. We here elaborate on a model-independent analysis in which spin-dependent interactions with both protons and neutrons are simultaneously considered. Within this approach, equivalent current limits on the WIMP-nucleon interaction at WIMP mass of 50 GeV/c2^{2} are either σp≤0.7\sigma_{p}\leq0.7 pb, σn≤0.2\sigma_{n}\leq0.2 pb or ∣ap∣≤0.4|a_{p}|\leq0.4, ∣an∣≤0.7|a_{n}|\leq0.7 depending on the choice of cross section or coupling strength representation. These limits become less restrictive for either larger or smaller masses; they are less restrictive than those from the traditional odd group approximation regardless of WIMP mass. Combination of experimental results are seen to produce significantly more restrictive limits than those obtained from any single experiment. Experiments traditionally considered spin-independent are moreover found to severely limit the spin-dependent phase space. The extension of this analysis to the case of positive signal experiments is explored.Comment: 12 pages, 12 figures, submitted to Phys. Rev.

    Dynamics of active membranes with internal noise

    Full text link
    We study the time-dependent height fluctuations of an active membrane containing energy-dissipating pumps that drive the membrane out of equilibrium. Unlike previous investigations based on models that neglect either curvature couplings or random fluctuations in pump activities, our formulation explores two new models that take both of these effects into account. In the first model, the magnitude of the nonequilibrium forces generated by the pumps is allowed to fluctuate temporally. In the second model, the pumps are allowed to switch between "on" and "off" states. We compute the mean squared displacement of a membrane point for both models, and show that they exhibit distinct dynamical behaviors from previous models, and in particular, a superdiffusive regime specifically arising from the shot noise.Comment: 7 pages, 4 figure

    Heisenberg exchange in magnetic monoxides

    Full text link
    The superexchange intertacion in transition-metal oxides, proposed initially by Anderson in 1950, is treated using contemporary tight-binding theory and existing parameters. We find also a direct exchange for nearest-neighbor metal ions, larger by a factor of order five than the superexchange. This direct exchange arises from Vddm coupling, rather than overlap of atomic charge densities, a small overlap exchange contribution which we also estimate. For FeO and CoO there is also an important negative contribution, related to Stoner ferromagnetism, from the partially filled minority-spin band which broadens when ionic spins are aligned. The corresponding J1 and J2 parameters are calculated for MnO, FeO, CoO, and NiO. They give good accounts of the Neel and the Curie-Weiss temperatures, show appropriate trends, and give a reasonable account of their volume dependences. For MnO the predicted value for the magnetic susceptibility at the Neel temperature and the crystal distortion arising from the antiferromagnetic transition were reasonably well given. Application to CuO2 planes in the cuprates gives J=1220oK, compared to an experimental 1500oK, and for LiCrO2 gives J1=4 50oK compared to an experimental 230oK.Comment: 21 pages, 1 figure, submitted to Phys. Rev. B 1/19/07. Realized J=4V^2/U applies generally, as opposed to J=2V^2/U from one-electron theory (1/28 revision

    A basal ganglia inspired model of action selection evaluated in a robotic survival task.

    Get PDF
    The basal ganglia system has been proposed as a possible neural substrate for action selection in the vertebrate brain. We describe a robotic implementation of a model of the basal ganglia and demonstrate the capacity of this system to generate adaptive switching between several acts when embedded in a robot that has to "survive" in a laboratory environment. A comparison between this brain-inspired selection mechanism and classical "winner-takes-all" selection highlights some adaptive properties specific to the model, such as avoidance of dithering and energy-saving. These properties derive, in part, from the capacity of simulated basal ganglia-thalamo-cortical loops to generate appropriate "behavioral persistence"

    Heavy Superheated Droplet Detectors as a Probe of Spin-independent WIMP Dark Matter Existence

    Full text link
    At present, application of Superheated Droplet Detectors (SDDs) in WIMP dark matter searches has been limited to the spin-dependent sector, owing to the general use of fluorinated refrigerants which have high spin sensitivity. Given their recent demonstration of a significant constraint capability with relatively small exposures and the relative economy of the technique, we consider the potential impact of heavy versions of such devices on the spin-independent sector. Limits obtainable from a CF3I\mathrm{CF_{3}I}-loaded SDD are estimated on the basis of the radiopurity levels and backgrounds already achieved by the SIMPLE and PICASSO experiments. With 34 kgd exposure, equivalent to the current CDMS, such a device may already probe to below 10−6^{-6} pb in the spin-independent cross section.Comment: 9 pages, 4 figures, accepted Phys. Rev.

    Polarization state of the optical near-field

    Full text link
    The polarization state of the optical electromagnetic field lying several nanometers above complex dielectric structures reveals the intricate light-matter interaction that occurs in this near-field zone. This information can only be extracted from an analysis of the polarization state of the detected light in the near-field. These polarization states can be calculated by different numerical methods well-suited to near--field optics. In this paper, we apply two different techniques (Localized Green Function Method and Differential Theory of Gratings) to separate each polarisation component associated with both electric and magnetic optical near-fields produced by nanometer sized objects. The analysis is carried out in two stages: in the first stage, we use a simple dipolar model to achieve insight into the physical origin of the near-field polarization state. In the second stage, we calculate accurate numerical field maps, simulating experimental near-field light detection, to supplement the data produced by analytical models. We conclude this study by demonstrating the role played by the near-field polarization in the formation of the local density of states.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.
    • …
    corecore